AI Article Synopsis

  • The ballistic regime of vibrational energy transport in molecular chains is characterized by high transport speed and efficiency, initiated by exciting a chain’s end group with mid-infrared photons.
  • Two types of chemically identical azido groups (normal and isotopically substituted nitrogen) were tested in alkyl chain compounds, revealing that isotope editing surprisingly decreased the transport speed.
  • Three different mechanisms for initiating the vibrational wavepacket were identified, involving direct formation from IR excitation, vibrational relaxation into localized end-group states, and relaxation into chain states, each contributing to the overall transport dynamics.

Article Abstract

The ballistic regime of vibrational energy transport in oligomeric molecular chains occurs with a constant, often high, transport speed and high efficiency. Such a transport regime can be initiated by exciting a chain end group with a mid-infrared (IR) photon. To better understand the wavepacket formation process, two chemically identical end groups, azido groups with normal, N-, and isotopically substituted, N-, nitrogen atoms, were tested for wavepacket initiation in compounds with alkyl chains of = 5, 10, and 15 methylene units terminated with a carboxylic acid (-a) group, denoted as NC-a and NC-a. The transport was initiated by exciting the azido moiety stretching mode, the ν tag, at 2100 cm (NC-a) or 2031 cm (NC-a). Opposite to the expectation, the ballistic transport speed was found to decrease upon N → N isotope editing. Three mechanisms of the transport initiation of a vibrational wavepacket are described and analyzed. The first mechanism involves the direct formation of a wavepacket via excitation with IR photons of several strong Fermi resonances of the tag mode with the ν + ν combination state while each of the combination state components is mixed with delocalized chain states. The second mechanism relies on the vibrational relaxation of an end-group-localized tag into a mostly localized end-group state that is strongly coupled to multiple delocalized states of a chain band. Harmonic mixing of ν of the azido group with CH wagging states of the chain permits a wavepacket formation within a portion of the wagging band, suggesting a fast transport speed. The third mechanism involves the vibrational relaxation of an end-group-localized mode into chain states. Two such pathways were found for the ν initiation: The ν mode relaxes efficiently into the twisting band states and low-frequency acoustic modes, and the ν mode relaxes into the rocking band states and low-frequency acoustic modes. The contributions of the three initiation mechanisms in the ballistic energy transport initiated by ν tag are quantitatively evaluated and related to the experiment. We conclude that the third mechanism dominates the transport in alkane chains of 5-15 methylene units initiated with the ν tag and the wavepacket generated predominantly at the CH twisting band. The isotope effect of the transport speed is attributed to a larger contribution of the faster wavepackets for NC-a or to the different breadth of the wavepacket within the twisting band. The study offers a systematic description of different transport initiation mechanisms and discusses the requirements and features of each mechanism. Such analysis will be useful for designing novel materials for energy management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287563PMC
http://dx.doi.org/10.1021/acs.jpcb.1c03986DOI Listing

Publication Analysis

Top Keywords

transport speed
20
initiation mechanisms
12
transport
12
twisting band
12
ballistic transport
8
energy transport
8
initiated exciting
8
wavepacket formation
8
methylene units
8
transport initiated
8

Similar Publications

Background And Objective: Relevant research has provided valuable insights into risk factors for bicycle crashes at intersections. However, few studies have focused explicitly on three common types of bicycle crashes on road segments: overtaking, rear-end, and door crashes. This study aims to identify risk factors for overtaking, rear-end, and door crashes that occur on road segments.

View Article and Find Full Text PDF

Contrasting Responses of Smoke Dispersion and Fire Emissions to Aerosol-Radiation Interaction during the Largest Australian Wildfires in 2019-2020.

Environ Sci Technol

January 2025

Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.

The record-breaking 2019-2020 Australian wildfires have been primarily linked to climate change and its internal variability. However, the meteorological feedback mechanisms affecting smoke dispersion and wildfire emissions on a synoptic scale remain unclear. This study focused on the largest wildfires occurring between December 25, 2019 and January 10, 2020, under the enhanced subtropical high, when the double peak in wildfire evolution was favored by sustained low humidity and two synchronous increases in temperature and wind.

View Article and Find Full Text PDF

Background: Predicting decline over the course of Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD), especially on relatively short time frames, is vital for appropriate treatment planning and to tailor patient and support systems' expectations. The current study tested if a functional upper limb motor learning task could predict one-year change in cognition and daily function.

Method: Cognitively unimpaired (n = 61), MCI (n = 35), and AD (32) older subjects (age: 74.

View Article and Find Full Text PDF

The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood.

View Article and Find Full Text PDF

Evaluation of windproof and sand fixation effect of protective system in the Desert oasis ecotone of Mingsha Mountain Dunhuang.

Sci Rep

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Dunhuang Gobi Desert Ecology and Environment Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.

The Desert oasis ecotone (DOE) protects the oasis from wind and sand intrusion, thereby playing a crucial role in controlling desertification. However, there is limited knowledge about how DOE functions in windproof and sand-fixation. Therefore this study employs a three-dimensional (3D) laser scanner to monitor surface accumulation and erosion, and through field observations, collects data on wind profiles, grain size, and sand transport rates to uncover the role of DOE in aeolian sand protection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!