A surface-enhanced infrared absorption spectroscopic chalcogenide waveguide sensor based on the silver island film was proposed for the first time to enhance the sensing performance in both liquid and gas phases. The chalcogenide waveguide sensor was fabricated by the lift-off and oblique angle deposition methods. The surface morphology of the silver island film with different thicknesses was characterized. The absorption of ethanol (liquid) at a wavelength of 1654 nm and that of methane (gas) at 3291 nm were measured using the fabricated chalcogenide waveguide sensor. The chalcogenide waveguide sensor integrated with the 1.8 nm-thick silver island film revealed the best sensing performance. With an acceptable increased waveguide loss resulting from the fabrication of the film, the absorbance enhancement factors for ethanol and methane were experimentally obtained to be >1.5 and >2.3, respectively. The 1σ limit of detection of methane for the sensor integrated with the 1.8 nm-thick silver island film was ∼4.11% for an averaging time of 0.2 s. The mathematic relation between the absorbance enhancement factor and the waveguide loss was derived for sensing performance improvement. Also, the proposed rectangular waveguide sensor provides an idea for the design of a sensor-on-a-chip instead of other waveguide sensors with a high requirement of fabrication accuracy, for example, a slot waveguide or a photonic crystal waveguide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c08177 | DOI Listing |
Sensors (Basel)
December 2024
School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
In the case of waveguide-based devices, once they are fabricated, their optical properties are already determined and cannot be dynamically controlled, which limits their applications in practice. In this paper, an isosceles triangular-coupling structure which consists of an isosceles triangle coupled with a two-bus waveguide is proposed and researched numerically and theoretically. The coupled mode theory (CMT) is introduced to verify the correctness of the simulation results, which are based on the finite difference time domain (FDTD).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Centre-Energie Materiaux et Telecommunications, Institut National de la Recherche Scientifique, Montreal, QC H5A 1K6, Canada.
This paper presents a high-performance circularly polarized (CP) magneto-electric (ME) dipole antenna optimized for wideband millimeter-wave (mm-wave) frequencies, specifically targeting advancements in 5G and 6G technologies. The CP antenna is excited through a transverse slot in a printed ridge gap waveguide (PRGW), which operates in a quasi-transverse electromagnetic (Q-TEM) mode. Fabricated on Rogers RT 3003 substrate, selected for its low-loss and cost-effective properties at high frequencies, the design significantly enhances both impedance and axial ratio (AR) bandwidths.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering, Stanford University, Stanford, CA 93405, USA.
Distributed feedback lasers, which feature rapid wavelength tunability, are not presently available in the yellow and orange spectral regions, impeding spectroscopic studies of short-lived species that absorb light in this range. To meet this need, a rapidly tunable laser system was constructed, characterized, and demonstrated for measurements of the NH radical at 597.4 nm.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
We observed tunable characteristics of optical frequency combs (OFCs) generated from InGaAs/GaAs double quantum wells (DQWs) asymmetric waveguide two-section mode-locked lasers (TS-MLLs). This involves an asymmetric waveguide mode-locked semiconductor laser (AWML-SL) operating at a center wavelength of net modal gain of approximately 1.06 µm, which indicates a stable pulse shape, with the power-current(P-I) characteristic curve revealing a small difference between forward and reverse drive currents in the gain region.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Mathematics and Physics, Nanjing Tech University, Nanjing 211816, China.
We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!