Model-informed drug development (MIDD) has been a powerful and efficient tool applied widely in pediatric drug development due to its ability to integrate and leverage existing knowledge from different sources to narrow knowledge gaps. The dose selection is the most common MIDD application in regulatory submission related to pediatric drug development. This article aims to give an overview of the 3 broad categories of use of MIDD in pediatric dose selection: leveraging from adults to pediatric patients, leveraging from animals to pediatric patients, and integrating mechanism in infants and neonates. Population pharmacokinetic analyses with allometric scaling can reasonably predict the clearance in pediatric patients aged >5 years. A mechanistic-based approach, such as physiologically based pharmacokinetic accounting for ontogeny, or an allometric model with age-dependent exponent, can be applied to select the dose in pediatric patients aged ≤2 years. The exposure-response relationship from adults or from other drugs in the same class may be useful in aiding the pediatric dose selection and benefit-risk assessment. Increasing application and understanding of use of MIDD have contributed greatly to several policy developments in the pediatric field. With the increasing efforts of MIDD under the Prescription Drug User Fee Act VI, bigger impacts of MIDD approaches in pediatric dose selection can be expected. Due to the complexity of model-based analyses, early engagement between drug developers and regulatory agencies to discuss MIDD issues is highly encouraged, as it is expected to increase the efficiency and reduce the uncertainty.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcph.1848 | DOI Listing |
J Am Chem Soc
December 2024
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China.
Oncolytic therapy, inducing cell death via cell membrane lysis, holds considerable promise in cancer treatment. However, achieving precise control over the structure and function of oncolytic materials for highly selective oncolytic therapy is a key challenge in the context of the subtle differences between tumor and normal tissues/cells. Herein, we report the development of pH-ultrasensitive oncolytic polyesters (pOPs) with an alternating sequence of ionizable and hydrophobic groups.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India.
Glimepiride (GLM) is one of the potential antidiabetic drugs used in clinics for a long time. It is currently used in combination with metformin along with other drugs, but has shown various complications in patients from long-term use. Thus, the hypothesis is to use a lower dose of GLM with a non-toxic class of flavonoid, naringin (NARN), for better therapy with minimal side-effects.
View Article and Find Full Text PDFNeuro Oncol
December 2024
Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Background: Selinexor is a selective inhibitor of exportin-1 (XPO1), a key mediator of the nucleocytoplasmic transport for molecules critical to tumor cell survival. Selinexor's lethality is generally associated with the induction of apoptosis, and in some cases, with autophagy-induced apoptosis. We performed this study to determine Selinexor's action in glioblastoma (GBM) cells, which are notoriously resistant to apoptosis.
View Article and Find Full Text PDFJ Ovarian Res
December 2024
TCM Gynecology Department, Hangzhou Hospital of Traditional Chinese Medicine, NO.453 Ti Yuchang Road, Hangzhou, 310007, Zhejiang, China.
Objective: He Shi Yu Lin Formula (HSYLF) is a clinically proven prescription for treating premature ovarian insufficiency (POI), and has shown a good curative effect. However, its molecular mechanisms are unclear. This study aimed to investigate the molecular mechanisms of HSYLF and clarify how network pharmacology analysis guides the design of animal experiments, including the selection of effective treatment doses and key targets, to ensure the relevance of the experimental results.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland.
Purpose: Long axial field-of-view (LAFOV) positron emission tomography/computed tomography (PET/CT) scanners enable high sensitivity and wide anatomical coverage. Therefore, they seem ideal to perform post-selective internal radiation therapy (SIRT) Y scans, which are needed, to confirm that the dose is delivered to the tumors and that healthy organs are spared. However, it is unclear to what extent the use of LAFOV PET is feasible and which dosimetry approaches results in accurate measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!