Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Among patients with acute respiratory failure requiring prolonged mechanical ventilation, tracheostomies are typically placed after approximately 7 to 10 days. Yet half of patients admitted to the intensive care unit receiving tracheostomy will die within a year, often within three months. Existing mortality prediction models for prolonged mechanical ventilation, such as the ProVent Score, have poor sensitivity and are not applied until after 14 days of mechanical ventilation. We developed a model to predict 3-month mortality in patients requiring more than 7 days of mechanical ventilation using deep learning techniques and compared this to existing mortality models.
Methods: Retrospective cohort study. Setting: The Medical Information Mart for Intensive Care III Database. Patients: All adults requiring ≥ 7 days of mechanical ventilation. Measurements: A neural network model for 3-month mortality was created using process-of-care variables, including demographic, physiologic and clinical data. The area under the receiver operator curve (AUROC) was compared to the ProVent model at predicting 3 and 12-month mortality. Shapley values were used to identify the variables with the greatest contributions to the model.
Results: There were 4,334 encounters divided into a development cohort (n = 3467) and a testing cohort (n = 867). The final deep learning model included 250 variables and had an AUROC of 0.74 for predicting 3-month mortality at day 7 of mechanical ventilation versus 0.59 for the ProVent model. Older age and elevated Simplified Acute Physiology Score II (SAPS II) Score on intensive care unit admission had the largest contribution to predicting mortality.
Discussion: We developed a deep learning prediction model for 3-month mortality among patients requiring ≥ 7 days of mechanical ventilation using a neural network approach utilizing readily available clinical variables. The model outperforms the ProVent model for predicting mortality among patients requiring ≥ 7 days of mechanical ventilation. This model requires external validation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241081 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253443 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!