Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Superalkalis and superhalogens are atomic clusters that mimic the chemistry of alkali and halogen atoms, respectively; the ionization energies of the superalkalis are less than those of alkali atoms, while the electron affinities of superhalogens are larger than those of the halogen atoms. These superions can serve as the building blocks of a new class of supersalts with applications in solar cells, metal-ion batteries, multiferroic materials, and so on. While considerable progress has been made in the design and synthesis of superhalogens, a similar understanding of superalkalis is lacking. Using density functional theory with hybrid exchange-correlation functional and Gaussian basis sets, we have systematically studied the role of size and composition on the properties of two different classes of clusters whose stabilities are governed by the Wade-Mingos polyhedral skeletal electron pair theory. One class belongs to the -borane family LiBX ( = 1, 2, 3; = 6, 12; X = H, F, CN), while the other to the Zintl ions Li[Be@Ge]. We show that LiBX and Li[Be@Ge] clusters are superalkalis with ionization energies as low as 2.84 eV in LiBH. However, contrary to expectation, the ionization energies do not decrease with increasing cluster volume. Instead, ionization energies are linked to the X ligands' electron affinities; the larger the electron affinity, the higher is the ionization energy. The understanding gained here will help in the discovery of superalkalis and, hence, enrich the library of supersalts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.1c02817 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!