Background: Mesenchymal stem cells (MSCs) are the major source of osteoblasts. Long noncoding RNAs (lncRNAs) are abundantly expressed RNAs that lack protein-coding potential and play an extensive regulatory role in cellular biological activities. However, the regulatory network of lncRNAs in MSC osteogenesis needs further investigation.

Methods: QRT-PCR, western blot, immunofluorescence, and immunohistochemistry assays were used to determine the levels of relevant genes. The osteogenic differentiation capability was evaluated by using Alizarin Red S (ARS) staining, alkaline phosphatase activity assays, hematoxylin & eosin staining or micro-CT. RNA fluorescence in situ hybridization (FISH) and RNAscope were used to detect HHAS1 expression in cells and bone tissue. A microarray assay was performed to identify differentially expressed microRNAs. RNA immunoprecipitation and RNA pull-down were used to explore the interactions between related proteins and nucleic acids.

Results: The level of lncRNA HHAS1 increased during bone marrow-derived MSC (BMSC) osteogenesis and was positively related to the levels of osteogenic genes and ARS intensity. HHAS1 was located in both the cytoplasm and the nucleus and was expressed in human bone tissue. HHAS1 facilitated BMSC osteogenic differentiation by downregulating miR-204-5p expression and enhancing the level of RUNX family transcription factor 2 (RUNX2). In addition, interferon regulatory factor 2 (IRF2) was increased during BMSC osteogenic differentiation and interacted with the promoter of HHAS1, which resulted in the transcriptional activation of HHAS1. Furthermore, IRF2 and HHAS1 helped improve bone defect repair in vivo.

Conclusions: Our study identified a novel lncRNA, HHAS1, that facilitates BMSC osteogenic differentiation and proposed a role for the IRF2/HHAS1/miR-204-5p/RUNX2 axis in BMSC osteogenesis regulation. These findings help elucidate the regulatory network of BMSC osteogenesis and provide potential targets for clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214856PMC
http://dx.doi.org/10.1002/ctm2.429DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
20
lncrna hhas1
12
bmsc osteogenesis
12
bmsc osteogenic
12
hhas1
9
hhas1 facilitates
8
bone marrow-derived
8
mesenchymal stem
8
stem cells
8
regulatory network
8

Similar Publications

Study on the antioxidant and antiosteoporotic activities of the oyster peptides prepared by ultrasound-assisted enzymatic hydrolysis.

Ultrason Sonochem

December 2024

Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China. Electronic address:

In this study, the effects of ultrasound-assisted enzymatic hydrolysis on the production of antioxidant and antiosteoporotic peptides derived from oysters were investigated. Results showed that ultrasound-assisted enzymatic hydrolysis significantly enhanced the peptide content, free radical scavenging ability, and ferric reducing antioxidant power of total oyster protein hydrolysate (TOPH), with optimal results achieved at 200 W (TOPH-200). Correspondingly, ultrasound treatment at 200 W increased the exposure of hydrophobic regions, reduced α-helix content, and facilitated the generation of small molecular weight peptides in TOPH.

View Article and Find Full Text PDF

Background: Interleaflet haemorrhage (IH) plays a well-recognized detrimental role in calcified aortic valve disease (CAVD). However, IH-induced fibro-osteogenic responses in valvular interstitial cells (VICs) appear to be triggered under specific pathological conditions. Iron deficiency (ID), a common co-morbidity in CAVD, may influence these responses.

View Article and Find Full Text PDF

miR-181a/MSC-Loaded Nano-Hydroxyapatite/Collagen Accelerated Bone Defect Repair in Rats by Targeting Ferroptosis Pathway.

J Funct Biomater

December 2024

Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.

: The reparative regeneration of jawbone defects poses a significant challenge within the field of dentistry. Despite being the gold standard, autogenous bone materials are not without drawbacks, including a heightened risk of postoperative infections. Consequently, the development of innovative materials that can surpass the osteogenic capabilities of autologous bone has emerged as a pivotal area of research.

View Article and Find Full Text PDF

Machine Learning and Metabolomics Predict Mesenchymal Stem Cell Osteogenic Differentiation in 2D and 3D Cultures.

J Funct Biomater

December 2024

BioMedical Systems Engineering Laboratory, Panoz Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland.

Stem cells have been widely used to produce artificial bone grafts. Nonetheless, the variability in the degree of stem cell differentiation is an inherent drawback of artificial graft development and requires robust evaluation tools that can certify the quality of stem cell-based products and avoid source-tissue-related and patient-specific variability in outcomes. Omics analyses have been utilised for the evaluation of stem cell attributes in all stages of stem cell biomanufacturing.

View Article and Find Full Text PDF

Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications.

Gels

December 2024

Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.

Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!