Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Eccrine porocarcinoma (EPC) is a rare skin cancer arising from the eccrine sweat glands. Due to the lack of effective therapies, metastasis is associated with a high mortality rate.
Objectives: To investigate the drivers of EPC progression.
Methods: We carried out genomic and transcriptomic profiling of metastatic EPC (mEPC), validation of the observed alterations in an EPC patient-derived cell line, confirmation of relevant observations in a large patient cohort of 30 tumour tissues, and successful treatment of a patient with mEPC under the identified treatment regimens.
Results: mEPC was characterized by a high tumour mutational burden (TMB) with an ultraviolet signature, widespread copy number alterations and gene expression changes that affected cancer-relevant cellular processes such as cell cycle regulation and proliferation, including a pathogenic TP53 (tumour protein 53) mutation, a copy number deletion in the CDKN2A (cyclin dependent kinase inhibitor 2A) region and a CTNND1/PAK1 [catenin delta 1/p21 (RAC1) activated kinase 1] gene fusion. The overexpression of EGFR (epidermal growth factor receptor), PAK1 and MAP2K1 (mitogen-activated protein kinase kinase 1; also known as MEK1) genes translated into strong protein expression and respective pathway activation in the tumour tissue. Furthermore, a patient-derived cell line was sensitive to EGFR and MEK inhibition, confirming the functional relevance of the pathway activation. Immunohistochemistry analyses in a large patient cohort showed the relevance of the observed changes to the pathogenesis of EPC. Our results indicate that mEPC should respond to immune or kinase inhibitor therapy. Indeed, the advanced disease of our index patient was controlled by EGFR-directed therapy and immune checkpoint inhibition for more than 2 years.
Conclusions: Molecular profiling demonstrated high TMB and EGFR/MAPK pathway activation to be novel therapeutic targets in mEPC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bjd.20604 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!