Dicer promotes Atg8 expression through RNAi independent mechanism in Cryptococcus neoformans.

FEMS Yeast Res

Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China.

Published: July 2021

ATG8 is one of the critical genes that participate in several essential autophagic steps. The expression of ATG8 must be exquisitely regulated to avoid physiological disorder and even cell death. However, the mechanisms of regulating ATG8 expression remain to be fully uncovered. In this investigation, we found that Dicer homologs in Cryptococcus neoformans could activate the expression of ATG8 independent of RNAi. Deletion of two Dicer homologs (DCR1 and DCR2) from C. neoformans, especially DCR2, led to significantly reduced Atg8 protein level, but deletion of other RNAi components did not result in the same phenotype. The autophagic flux, the numbers of autophagic bodies and the tolerance to glucose starvation of dcr2∆ were also significantly reduced. Further investigation showed that Dcr2 activates the expression of ATG8 through the promoter region, not the Open Reading Frame or 3' Untranslated Region. We also found that a similar phenomenon exists in mammalian cells, as DCR1 instead of AGO2 knockdown also reduced the expression of LC3, indicating that this mechanism may be conservative in eukaryotic cells. Therefore, a novel transcription activation mechanism was revealed in this paper.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsyr/foab037DOI Listing

Publication Analysis

Top Keywords

expression atg8
12
atg8 expression
8
cryptococcus neoformans
8
dicer homologs
8
atg8
7
expression
6
dicer promotes
4
promotes atg8
4
expression rnai
4
rnai independent
4

Similar Publications

Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR).

View Article and Find Full Text PDF

To investigate the effect of icariin (ICA) on hepatocellular carcinoma (HCC) and its autophagy/apoptosis mechanism in HCC. The anti-HCC mechanism of ICA was investigated using HCC cells treated with 20 µmol/L ICA. Cell viability and proliferation were assessed using CCK-8 and colony formation assays, respectively, while TUNEL staining evaluated anti-apoptotic effects.

View Article and Find Full Text PDF

Stress granules sequester autophagy proteins to facilitate plant recovery from heat stress.

Nat Commun

December 2024

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.

The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana.

View Article and Find Full Text PDF

parasites have a complex life cycle that transitions between mosquito and mammalian hosts, and undergo continuous cellular remodeling to adapt to various drastic environments. Following hepatocyte invasion, the parasite discards superfluous organelles for intracellular replication, and the remnant organelles undergo extensive branching and mature into hepatic merozoites. Autophagy is a ubiquitous eukaryotic process that permits the recycling of intracellular components.

View Article and Find Full Text PDF

Schizosaccharomyces pombe Grx4 is subject to autophagic degradation under nitrogen- and iron- starvation and ER-stress.

Arch Biochem Biophys

February 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China. Electronic address:

Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!