The role of lipid droplets in microbial pathogenesis.

J Med Microbiol

Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.

Published: June 2021

The nonpolar lipids present in cells are mainly triacylglycerols and steryl esters. When cells are provided with an abundance of nutrients, these storage lipids accumulate. As large quantities of nonpolar lipids cannot be integrated into membranes, they are isolated from the cytosolic environment in lipid droplets. As specialized, inducible cytoplasmic organelles, lipid droplets have functions beyond the regulation of lipid metabolism, in cell signalling and activation, membrane trafficking and control of inflammatory mediator synthesis and secretion. Pathogens, including fungi, viruses, parasites, or intracellular bacteria can induce and may benefit from lipid droplets in infected cells. Here we review biogenesis of lipid droplets as well as the role of lipid droplets in the pathogenesis of selected viruses, bacteria, protists and yeasts.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.001383DOI Listing

Publication Analysis

Top Keywords

lipid droplets
24
role lipid
8
nonpolar lipids
8
droplets
6
lipid
6
droplets microbial
4
microbial pathogenesis
4
pathogenesis nonpolar
4
lipids cells
4
cells triacylglycerols
4

Similar Publications

Excess lipid droplet (LD) accumulation is associated with several pathological states, including Alzheimer's disease (AD). However, the mechanism(s) by which changes in LD composition and dynamics contribute to pathophysiology of these disorders remains unclear. Apolipoprotein E (ApoE) is a droplet associated protein with a common risk variant (E4) that confers the largest increase in genetic risk for late-onset AD.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) caused by placental dysfunctions leads to fetal growth defects. Maternal microbiome and its metabolites have been reported to promote placental development. Milk fat globule membrane (MFGM) is known for its diverse bioactive functions, while the effects of gestational MFGM supplementation on the maternal gut microbiota, placental efficiency, and fetal development remained unclear.

View Article and Find Full Text PDF

Common salt (NaCl) causes developmental, behavioral, and physiological defects in .

Nutr Neurosci

January 2025

Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.

Purpose: The incidence of obesity has surged to pandemic levels in recent decades. Approximately 1.89 million obesity are linked to excessive salt consumption.

View Article and Find Full Text PDF

Tau reduction impairs nephrocyte function in Drosophila.

BMB Rep

January 2025

Department of Medical Science, Soonchunhyang University, Asan 31538, 2Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea.

Tau, a microtubule-associated protein, is known for its significant involvement in neurodegenerative diseases. While various molecular and immunohistochemical techniques have confirmed the presence of Tau in podocytes, its precise function within these cells remains elusive. In this study, we investigate the role of Tau in kidney podocytes using Drosophila pericardial nephrocytes as a model.

View Article and Find Full Text PDF

A novel mechanism promoting lipid droplet formation.

Trends Plant Sci

January 2025

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China. Electronic address:

Recently, Torres-Romero et al. identified a novel lipid droplet (LD)-associated protein, α/β-hydrolase domain containing protein 1 (ABHD1), in algae. Structurally, ABHD1 promotes the budding and growth of LDs and, functionally, it hydrolyzes lyso-diacylglyceryl-N,N,N-trimethylhomoserine (lyso-DGTS) to generate glyceryl-N,N,N-trimethylhomoserine (GTS) and free fatty acids (FFAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!