The conversion of layered transition metal carbides and/or nitrides (MXenes) into zero-dimensional structures with thicknesses and lateral dimensions of a few nanometers allows these recently discovered materials with exceptional electronic properties to exploit the additional benefits of quantum confinement, edge effects, and large surface area. Conventional methods for the conversion of MXene nanosheets and quantum dots, however, involve extreme conditions such as high temperatures and/or harsh chemicals that, among other disadvantages, lead to significant degradation of the material as a consequence of their oxidation. Herein, we show that the large surface acceleration-on the order of 10 million 's-produced by high-frequency (10 MHz) nanometer-order electromechanical vibrations on a chip-scale piezoelectric substrate is capable of efficiently nebulizing, and consequently dimensionally reducing, a suspension of multilayer TiCT (MXene) into predominantly monolayer nanosheets and quantum dots while, importantly, preserving the material from any appreciable oxidation. As an example application, we show that the high-purity MXene quantum dots produced using this room-temperature chemical-free synthesis method exhibit superior performance as electrode materials for electrochemical sensing of hydrogen peroxide compared to the highly oxidized samples obtained through conventional hydrothermal synthesis. The ability to detect concentrations as low as 5 nM is a 10-fold improvement to the best reported performance of TiCT MXene electrochemical sensors to date.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c03428DOI Listing

Publication Analysis

Top Keywords

quantum dots
16
tict mxene
12
nanosheets quantum
12
mxene nanosheets
8
large surface
8
mxene
5
quantum
5
acoustomicrofluidic synthesis
4
synthesis pristine
4
pristine ultrathin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!