The upcycling of waste biomass into valuable materials by resource-efficient chemical transformations is a prime objective for sustainable chemistry. This approach is demonstrated in a straightforward light-driven synthesis of polyols and polyurethane foams from the multi-ton waste products of cashew nut processing. The photo-oxygenation of cardanol from nutshell oil results in the formation of synthetically versatile hydroperoxides. The choice of the workup method (i. e., reduction, hydrogenation, epoxidation) enables access to a diverse range of alcohols with tunable alkene and OH functions. Condensation with isocyanates to give rigid polyurethane foams provides a resource-efficient waste-to-value chain that benefits from the availability of cardanol and installation of OH groups from aerial O .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456804 | PMC |
http://dx.doi.org/10.1002/cssc.202101175 | DOI Listing |
Materials (Basel)
December 2024
Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia.
The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether polyol Lupranol 3300 and through oxypropylation with propylene carbonate. The OH functionality and composition of the polyols were analyzed via wet chemistry and FTIR spectroscopy.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Energy and Building Environment, Guilin University of Aerospace Technology, Guilin 541004, China.
In this paper, we investigated the efficient metal-free phosphorus-nitrogen (PN) catalyst and used the PN catalyst to degrade waste PU with two-component binary mixed alcohols as the alcohol solvent. We examined the effects of reaction temperature, time, and other factors on the hydroxyl value and viscosity of the degradation products; focused on the changing rules of the hydroxyl value, viscosity, and molecular weight of polyols recovered from degradation products with different dosages of the metal-free PN catalyst; and determined the optimal experimental conditions of reaction temperature 180 °C, reaction time 3 h, and PN dosage 0.08%.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary.
In this work, α-tocopherol and trolox were studied as compounds that have high biological activity. α-Tocopherol is considered a food additive because the refining process of vegetable oils causes the depletion of this vitamin, and thus, its inclusion is required to keep them from oxidizing. Computational tools have determined the antioxidant activity of these additives.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.
The aim of this work was to synthesize polyurethane foams based on petrochemical polyols and biopolyols with specific apparent densities (40, 60, 80, 100, and 120 kg/m), test their properties, glycolyze them, and finally analyze each glycolyzed product. The petroleum-based foams, used as reference foams, and the bio-based foams underwent a series of standard tests to define their properties (the content of closed cells 20-95%, compressive strength 73-1323 kPa, thermal conductivity 24-42 mW/m∙K, brittleness 4.6-82.
View Article and Find Full Text PDFChemSusChem
January 2025
Qingdao University, College of Chemistry and Chemical Engineering, 308 Ningxia Road, Qingdao, CHINA.
Polyurethane (PU), as a thermoset polymer, is extensively utilized in various applications, such as refrigerator foams, sponges, elastomers, shoes, etc. However, the recycling of post-consumed PU poses significant challenges due to its intricate and extensive crosslinking structures. Catalytic hydrogenation is one of the most effective methods for recycling PU waste, nevertheless, there is currently a lack for a hydrogenation catalyst that is both high-performing, recyclable, and cost-effective for breaking down post-consumed PU materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!