AI Article Synopsis

  • Phytomanagement leverages plants and soil conditioners to enhance contaminated land while minimizing environmental risks, focusing on the effectiveness of Salvia sclarea L. (sage) and Coriandrum sativum L. (coriander) along with arbuscular mycorrhizal fungi (AMF).
  • The study found that sage successfully immobilizes metal(loid)s and its essential oil (EO) had similar metal concentrations to those from uncontaminated soil, making it a promising candidate for value-added products.
  • In contrast, coriander EOs also showed acceptable metal levels, but its distillation residues had high Cd concentrations, limiting their use; AMF did not effectively reduce Cd mobility in coriander soil.

Article Abstract

Phytomanagement uses plants and soil conditioners to create value on contaminated land while minimizing environmental risk. This work was carried out on a metal(loid)-contaminated site and aimed at assessing the suitability of Salvia sclarea L. (sage) and Coriandrum sativum L. (coriander) combined with an arbuscular mycorrhizal fungus (AMF) inoculant to immobilize metal(loid)s and produce essential oils (EO). The effect of the inoculant on the transfer of metal(loid)s (ML, i.e., Cd, Cu, Pb, Zn, As, Ni, and Sb) to plants and the ML soil mobility were investigated. The ML concentrations in EO from both plant species and the valorization options for the distillation residues (soil conditioner, animal fodder, and anaerobic digestion) were studied. Sage was a suitable candidate for this value chain because it presents an excluder phenotype and the residues of oil extraction could be used as a soil conditioner. The metal concentrations in the sage EO were similar to those obtained from plants cultivated on an uncontaminated soil. These results indicate the suitability of sage harvested on the contaminated soil according to the ML fate in the whole value chain. Like the EO of sage, ML concentrations in the coriander EO did not differ from those in the commercial EO that were obtained from plants grown on uncontaminated soil. However, the use of distillation residues of coriander was limited by their relatively elevated Cd concentrations. The use of a mycorrhizal inoculum did not decrease the Cd mobility in soil for the coriander.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-15045-4DOI Listing

Publication Analysis

Top Keywords

produce essential
8
essential oils
8
fate chain
8
soil
8
plants soil
8
distillation residues
8
soil conditioner
8
uncontaminated soil
8
plants
5
sage
5

Similar Publications

Introduction: Traditional extraocular electrical stimulation typically produces diffuse electric fields across the retina, limiting the precision of targeted therapy. Temporally interfering (TI) electrical stimulation, an emerging approach, can generate convergent electric fields, providing advantages for targeted treatment of various eye conditions.

Objective: Understanding how detailed structures of the retina, especially the optic nerve, affects electric fields can enhance the application of TI approach in retinal neurodegenerative and vascular diseases, an essential aspect that has been frequently neglected in previous researches.

View Article and Find Full Text PDF

Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, , that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U).

View Article and Find Full Text PDF

is the etiologic agent of the plague. A hallmark of plague is subversion of the host immune response by disrupting host signaling pathways required for inflammation. This non-inflammatory environment permits bacterial colonization and has been shown to be essential for disease manifestation.

View Article and Find Full Text PDF

Live human brain tissues provide unique opportunities for understanding the physiology and pathophysiology of synaptic transmission. Investigations have been limited to anatomy, electrophysiology, and protein localization-while crucial parameters such as synaptic vesicle dynamics were not visualized. Here we utilize zap-and-freeze time-resolved electron microscopy to overcome this hurdle.

View Article and Find Full Text PDF

Glucose-6-Phosphatase (G6Pase), a key enzyme in gluconeogenesis and glycogenolysis in the mammalian liver and kidney, converts glucose-6-phosphate to glucose for maintaining systemic blood glucose homeostasis during nutrient deprivation. However, its function has remained elusive in insects, which have no need for G6Pase in sugar homeostasis since they convert glucose-6-phosphate to trehalose, their main circulating sugar, via trehalose phosphate synthase (TPS1). In this study we identify an unexpected and essential requirement for G6Pase in male fertility, specifically to produce motile sperm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!