Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionr6lqr3mbn4o16lrfpatepaqfpp34eptk): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Present work comprehensively investigated the electrochemical response of Nickel-2 Aminoterephthalic acid Metal-Organic Framework (NiNHBDC) and its reduced graphitic carbon (rGO) based hybrids for methanol (CHOH) oxidation reaction (MOR) in an alkaline environment. In a thorough analysis of a solvothermally synthesized Metal-Organic Frameworks (MOFs) and its reduced graphitic carbon-based hybrids, functional groups detection was performed by FTIR, the morphological study by SEM, crystal structure analysis via XRD, and elemental analysis through XPS while electrochemical testing was accomplished by Chronoamperometry (CA), Cyclic Voltametric method (CV), Electrochemically Active Surface Area (EASA), Tafel slope (b), Electron Impedance Spectroscopy (EIS), Mass Activity, and roughness factor. Among all the fabricated composites, NiNHBDC MOF/5 wt% rGO hybrid by possessing an auspicious current density (j) of 267.7 mA/cm at 0.699 V (vs Hg/HgO), a Tafel slope value of 60.8 mV dec, EASA value of 15.7 cm, and by exhibiting resistance of 13.26 Ω in a 3 M CHOH/1 M NaOH solution displays grander electrocatalytic activity as compared to state-of-the-art platinum-based electrocatalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238968 | PMC |
http://dx.doi.org/10.1038/s41598-021-92660-8 | DOI Listing |
iScience
December 2024
Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine.
5-Aminolevulinic acid (5-ALA) is an essential compound in the biosynthesis of heme, playing a critical role in various physiological processes within the human body. This review provides the thorough analysis of the latest research on the molecular mechanisms and potential therapeutic benefits of 5-ALA in managing metabolic disorders. The ability of 5-ALA to influence immune response and inflammation, oxidative/nitrosative stress, antioxidant system, mitochondrial functions, as well as carbohydrate and lipid metabolism, is mediated by molecular mechanisms associated with the suppression of the transcription factor NF-κB signaling pathway, activation of the transcription factor Nrf2/heme oxygenase-1 (HO-1) system leading to the formation of heme-derived reaction products (carbon monoxide, ferrous iron, biliverdin, and bilirubin), which may contribute to HO-1-dependent cytoprotection through antioxidant and immunomodulatory effects.
View Article and Find Full Text PDFACS Earth Space Chem
December 2024
Université Paris-Est Créteil and Université Paris Cité, CNRS, LISA, Créteil F-94010, France.
Hydroxyacetone (HA) is an atmospheric oxidation product of isoprene and other organic precursors that can form brown carbon (BrC). Measured bulk aqueous-phase reaction rates of HA with ammonium sulfate, methylamine, and glycine suggest that these reactions cannot compete with aqueous-phase hydroxyl radical oxidation. In cloud chamber photooxidation experiments with either gaseous or particulate HA in the presence of the same N-containing species, BrC formation was minor, with similar mass absorption coefficients at 365 nm (<0.
View Article and Find Full Text PDFChem Sci
December 2024
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
Hydrazine-assisted water splitting is a promising strategy for energy-efficient hydrogen production, yet challenges remain in developing effective catalysts that can concurrently catalyze both the hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) in acidic media. Herein, we report an effective bifunctional catalyst consisting of Rh clusters anchored on CoO branched nanosheets (Rh-CoO BNSs) synthesized an innovative arginine-induced strategy. The Rh-CoO BNSs exhibit unique Rh-O-Co interfacial sites that facilitate charge redistribution between Rh clusters and the CoO substrate, thereby optimizing their valence electronic structures.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry & Biochemistry, Department of Materials Science & Engineering, California NanoSystems Institute, University of California, Los Angeles Los Angeles CA 90095 USA
Laser-induced graphene (LIG) has gained significant attention, with over 170 publications in 2023 alone. This surge in popularity is due to the unique advantages LIG offers over traditional thermal methods, such as fast, solvent-free, scalable production and its ability to scribe intricate patterns on various substrates, including heat-sensitive materials like plastics. In recent developments, metal-embedded LIG (M-LIG) has expanded the potential applications of LIG, particularly in energy storage, microelectronics, and sensing.
View Article and Find Full Text PDFChem Sci
December 2024
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
Nanofluidics is a system of fluid transport limited to a nano-confined space, including the transport of ions and molecules. The use of intelligent nanofluidics has shown great potential in energy conversion. However, ion transport is hindered by homogeneous membranes with uniform charge distribution and concentration polarization, which often leads to an undesirable power conversion performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!