QPAT-seq, a rapid and deduplicatable method for quantification of poly(A) site usages.

Methods Enzymol

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States. Electronic address:

Published: July 2021

Alternative polyadenylation (APA) is an essential regulatory mechanism for gene expression. The next generation sequencing provides ample opportunity to precisely delineate APA sites genome-wide. Various methods for profiling transcriptome-wide poly(A) sites were developed. By comparing available methods, the ways for adding sequencing adaptors to fit with the Illumina sequencing platform are different. These methods have identified more than 50% genes that undergo APA in eukaryotes. However, due to the unbalanced PCR during library preparation, accurate quantification of poly(A) sites is still a challenge. Here, we describe an updated poly(A) tag sequencing method that incorporates unique molecular identifier (UMI) into the adaptor for removing quantification bias induced by PCR duplicates. Hence, quantification of poly(A) site usages can be achieved by counting UMIs. This protocol, quantifying poly(A) tag sequencing (QPAT-seq), can be finished in 1 day with reduced cost, and is particularly useful for application with a large number of samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2021.04.002DOI Listing

Publication Analysis

Top Keywords

quantification polya
12
polya site
8
site usages
8
polya sites
8
polya tag
8
tag sequencing
8
polya
6
sequencing
5
qpat-seq rapid
4
rapid deduplicatable
4

Similar Publications

Prevailing poly(dT)-primed 3' single-cell RNA-seq protocols generate barcoded cDNA fragments containing the reverse transcriptase priming site, which is expected to be the poly(A) tail or a genomic adenine homopolymer. Direct sequencing across this priming site was historically difficult because of DNA sequencing errors induced by the homopolymeric primer at the 'barcode' end. Here, we evaluate the capability of "avidity base chemistry" DNA sequencing from Element Biosciences to sequence through this homopolymer accurately, and the impact of the additional cDNA sequence on read alignment and precise quantification of polyadenylation site usage.

View Article and Find Full Text PDF

NanoTrans: an integrated computational framework for comprehensive transcriptome analysis with nanopore direct RNA sequencing.

J Genet Genomics

November 2024

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China. Electronic address:

Nanopore direct RNA sequencing (DRS) provides the direct access to native RNA strands with full-length information, shedding light on rich qualitative and quantitative properties of gene expression profiles. Here with NanoTrans, we present an integrated computational framework that comprehensively covers all major DRS-based application scopes, including isoform clustering and quantification, poly(A) tail length estimation, RNA modification profiling, and fusion gene detection. In addition to its merit in providing such a streamlined one-stop solution, NanoTrans also shines in its workflow-orientated modular design, batch processing capability, all-in-one tabular and graphic report output, as well as automatic installation and configuration supports.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the processes regulating mRNA in cells by tracking its movement through different compartments using a technique called subcellular TimeLapse-seq.
  • The findings reveal that transcripts from functionally similar genes exhibit comparable movement rates, and a relationship between the DDX3X protein and nuclear export of RNA is established.
  • The research also shows that mRNA with longer chromatin residency tends to have longer poly(A) tails, while machine learning techniques were used to predict the various lifecycles of these mRNAs based on their molecular characteristics.
View Article and Find Full Text PDF

Discovery of sulfonamide resistance genes in deep groundwater below Patna, India.

Environ Pollut

September 2024

Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, United Kingdom. Electronic address:

Global usage of pharmaceuticals has led to the proliferation of bacteria that are resistant to antimicrobial treatments, creating a substantial public health challenge. Here, we investigate the emergence of sulfonamide resistance genes in groundwater and surface water in Patna, a rapidly developing city in Bihar, India. We report the first quantification of three sulfonamide resistance genes (sulI, sulII and sulIII) in groundwater (12-107 m in depth) in India.

View Article and Find Full Text PDF

Leishmania is one of the most common diseases between human and animals, caused by Leishmania infantum parasite. Here, we have developed an ultra-selective turn-on fluorescent probe based on an aptamer and Chitosan-CD nanocomposite. The CD used in this study were synthesized using Quercus cap extract and a microwave-assisted approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!