A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cellular Calcium Levels Influenced by NCA-2 Impact Circadian Period Determination in . | LitMetric

Intracellular calcium signaling has been implicated in the control of a variety of circadian processes in animals and plants, but its role in microbial clocks has remained largely cryptic. To examine the role of intracellular Ca in the clock, we screened mutants with knockouts of calcium transporter genes and identified a gene encoding a calcium exporter, , uniquely as having significant period effects. The loss of NCA-2 results in an increase in the cytosolic calcium level, and this leads to hyper-phosphorylation of core clock components, FRQ and WC-1, and a short period, as measured by both the core oscillator and the overt clock. Genetic analyses showed that mutations in certain phospho-sites and in () are epistatic to in controlling the pace of the oscillator. These data are consistent with a model in which elevated intracellular Ca leads to the increased activity of CAMK-2, leading to enhanced FRQ phosphorylation, accelerated closure of the circadian feedback loop, and a shortened circadian period length. At a mechanistic level, some CAMKs undergo more auto-phosphorylations in the mutant, consistent with high calcium levels in the mutant influencing the enzymatic activities of CAMKs. NCA-2 interacts with multiple proteins, including CSP-6, a protein known to be required for circadian output. Most importantly, the expression of 2 is circadian clock-controlled at both the transcriptional and translational levels, and this in combination with the period effects seen in strains lacking NCA-2 firmly places calcium signaling within the larger circadian system, where it acts as both an input to and an output from the core clock. Circadian rhythms are based on cell-autonomous, auto-regulatory feedback loops formed by interlocked positive and negative arms, and they regulate myriad molecular and cellular processes in most eukaryotes, including fungi. Intracellular calcium signaling is also a process that impacts a broad range of biological events in most eukaryotes. Clues have suggested that calcium signaling can influence circadian oscillators through multiple pathways; however, mechanistic details have been lacking in microorganisms. When we built on prior work describing calcium transporters in the fungus , one such transporter, NCA-2, was identified as a regulator of circadian period length. Increased intracellular calcium levels caused by the loss of NCA-2 resulted in overactivation of calcium-responsive protein kinases, in turn leading to a shortened circadian period length. Importantly, the expression of NCA-2 is itself controlled by the molecular clock. In this way, calcium signaling can be seen as providing both input to and output from the circadian system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262947PMC
http://dx.doi.org/10.1128/mBio.01493-21DOI Listing

Publication Analysis

Top Keywords

calcium signaling
20
circadian period
16
calcium levels
12
circadian
12
intracellular calcium
12
period length
12
calcium
11
period effects
8
loss nca-2
8
core clock
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!