Sufficient quantity of trace metals is essential for a well performing anaerobic digestion (AD) process. Among the essential trace elements in active sites of multiple important enzymes for AD are iron and nickel ions. In the present study, iron and nickel in the form of FeO and NiO were coated on TiO nanoparticles to be used in batch and continuous operation mode. The effect of TiO, FeO-TiO, and NiO-TiO nanoparticles on each step of AD process was assessed utilizing simple substrates (i.e. cellulose, glucose, acetic acid, and mixture of H-CO) as well as complex ones (i.e. municipal biopulp). The hydrolysis rate of cellulose substrate increased with higher dosages of the coated TiO with both metals. For instance, the hydrolysis rate was increased up to 54% at FeO-TiO and at a concentration of 23.5 mg/L for NiO-TiO it was increased up to 58%, while higher dosage suppressed the hydrolytic activity. Experimental results revealed that low dosages of NiO-TiO increased the accumulated methane production up to 24% probably by increasing the enzymatic activity of acetoclastic methanogenesis. NiO-TiO showed positive effect on batch and continuous AD of biopulp and improved methane yield up to 8%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131277DOI Listing

Publication Analysis

Top Keywords

anaerobic digestion
8
iron nickel
8
coated tio
8
batch continuous
8
hydrolysis rate
8
nio-tio increased
8
multicomponent nanoparticles
4
nanoparticles improve
4
improve anaerobic
4
digestion performance
4

Similar Publications

Anaerobic digestion (AD) technology offers significant advantages in addressing environmental issues arising from the intensification of livestock production since it enables waste reduction and energy recovery. However, the molecular composition of dissolved organic matter (DOM) and its linkages to microbial biodiversity during the industrial-scale AD process of chicken manure (CM) remains unclear. In this study, the chemical structure of CM digestate-derived DOM was characterized by using multi-spectroscopic techniques and ultrahigh-resolution mass spectrometry, and the microbial composition was detected by using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Dynamics and Insights into the Unique Ecological Guild of Fungi in Bacteria-Bioaugmented Anaerobic Digesters.

J Fungi (Basel)

January 2025

Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, Pretoria 0083, South Africa.

Anaerobic digesters host a variety of microorganisms, and they work together to produce biogas. While bacterial and archaeal communities have been well explored using molecular techniques, fungal community structures remain relatively understudied. The present study aims to investigate the dynamics and potential ecological functions of the predominant fungi in bacteria-bioaugmented anaerobic digesters.

View Article and Find Full Text PDF

Improper management of biogas residue (BR) can reduce sustainability in the food waste treatment industry. To address this issue, a comprehensive evaluation framework, based on emergy analysis, carbon emissions and economic analysis, is proposed in this study, to explore how different BR disposal practices affect the comprehensive performance of the industry. A food waste treatment plant in Henan Province, China (anaerobic digestion (AD) + BR landfilling: Scenario 1 [S1]), and two alternative scenarios (S2: AD + BR incineration; S3: AD + BR composting) are investigated as a case study.

View Article and Find Full Text PDF

Optimized hydrothermal carbonization of chicken manure and anaerobic digestion of its process water for better energy management.

J Environ Manage

January 2025

Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry & Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium.

Modern poultry production is faced with the challenge of properly managing its associated wastes, in particular chicken manure (CM). There is a need to improve the management of CM through conversion processes that allow the production of value-added products, particularly for energy purposes, such as hydrothermal carbonization (HTC) and anaerobic digestion (AD). The objectives of this study were: i) to optimize the CM-HTC, using response surface methodology with simultaneous optimization of mass yield and higher heating value (HHV), and ii) to evaluate the biomethane potential of the process water generated from hydrochar production under the optimized condition.

View Article and Find Full Text PDF

Management and outcome of mesh infection after abdominal wall reconstruction in a tertiary care center.

Hernia

January 2025

Department of Infectious Diseases, Hospices Civils de Lyon, Service des Maladies Infectieuses et Tropicales, 103 Grande Rue de la Croix-Rousse, Lyon, 69004, France.

Purpose: Abdominal wall reconstruction is a common surgical procedure, with a post-operative risk of mesh-associated infection of which management is poorly known. This study aims to comprehensively analyze clinical and microbiological aspects of mesh infection, treatment modalities, and associated outcomes.

Methods: Patients with abdominal mesh infection were included in a retrospective observational cohort (2010-2023).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!