A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling the kinetics of potentially toxic elements desorption in sediment affected by a dam breakdown disaster in Doce River - Brazil. | LitMetric

On November 5th, 2015, a mining dam spilled a huge plume of mining waste in the Doce River. Even though many studies have reported the environmental impact from the Doce River's tragedy, the transport of potentially toxic elements (PTE) by kinetic modeling to determine how long the basin takes to achieve the natural balance has not been described. Therefore, samples of sludge, sediment, and water were collected along the Doce River basin, to assess the elements' total leaching by kinetic modeling. The elements Fe, Al, Mn, Cu, Ag, Pb, Cd, and As were evaluated. An innovative mobilization factor (F) indicated that Mn, Ag, and Cd can be mobilized about 80, 89, and 57 times more than its initial concentration. Besides, in low pH, the Al and Pb ions can be mobilized. The desorption kinetics showed a lower rate constant (k) and higher initial desorption constant (h) for Mn than Cd and Ag, suggesting both high- and low-affinity interaction sites for Mn. The exponential decay demonstrated that metals can leach for months or years. Thus, the long-lasting release of metals from mining tailing waste in concentrations that endanger the ecosystem and human health makes clear the need for long-term monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131157DOI Listing

Publication Analysis

Top Keywords

doce river
12
toxic elements
8
kinetic modeling
8
modeling kinetics
4
kinetics toxic
4
elements desorption
4
desorption sediment
4
sediment dam
4
dam breakdown
4
breakdown disaster
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!