Background: Neuroinflammation induced by lead exposure (Pb) is a major cause of neurotoxicity of Pb in the central nervous system (CNS). The NLR family, domain of pyrin containing 3 (NLRP3) involves in various neurological diseases, while the question of whether NLRP3 plays a role in lead-induced neuroinflammation has not yet been reported.
Methods: Developmental and knockout (KO) NLRP3 mice were used to establish two in vivo models, and BV2 cells were used to establish an in vitro model. Behavioral and electrophysiologic tests were used to assess the neurotoxicity of Pb, and immunofluorescence staining was used to assess neuroinflammation. Real-time PCR and western blot were performed to examine the mRNA and protein levels of inflammatory cytokines and NLRP3 inflammasomes. siRNA technology was used to block NLRP3 expression.
Results: Pb exposure led to neural injure and microglial activation in the hippocampus region, while minocycline intervention attenuated Pb-induced neurotoxicity by inhibiting neuroinflammation. Pb increased the expression of NLRP3 and promoted cleavage of caspase-1 in mRNA and protein levels, and minocycline partially reversed the effects of Pb on NLRP3 inflammasomes. Blocking of NLRP3 by KO mice or siRNA attenuated neural alterations induced by Pb, weakened microglial activation in vivo and in vitro as well, without affecting the accumulation of Pb. Pb increased autophagic protein levels and phosphorylation of NF-κB, while suppressing autophagy or NF-κB inhibited Pb's effects on NLRP3.
Conclusions: NLRP3 is involved in the regulation of Pb-induced neurotoxicity. These findings expand mechanism research of Pb neurotoxicity and may help establish new prevention strategies for Pb neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.117520 | DOI Listing |
J Chem Theory Comput
March 2025
Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
Protein evolution has shaped enzymes that maintain stability and function across diverse thermal environments. While sequence variation, thermal stability and conformational dynamics are known to influence an enzyme's thermal adaptation, how these factors collectively govern stability and function across diverse temperatures remains unresolved. Cytosolic malate dehydrogenase (cMDH), a citric acid cycle enzyme, is an ideal model for studying these mechanisms due to its temperature-sensitive flexibility and broad presence in species from diverse thermal environments.
View Article and Find Full Text PDFBone Joint Res
March 2025
Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
Aims: Osteoarthritis (OA) is a widespread chronic degenerative joint disease with an increasing global impact. The pathogenesis of OA involves complex interactions between genetic and environmental factors. Despite this, the specific genetic mechanisms underlying OA remain only partially understood, hindering the development of targeted therapeutic strategies.
View Article and Find Full Text PDFFASEB J
March 2025
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China.
Copper exposure poses potential detrimental effects on both public and ecosystem health. Spermidine, an antioxidant, has shown promise in reducing oxidative stress and inflammation within the liver. However, its specific role in mitigating copper-induced hepatic cuproptosis and disturbances in copper metabolism remains unexplored.
View Article and Find Full Text PDFPhysiol Plant
March 2025
Plant Biodynamics Laboratory and Department of Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
The plant hormone auxin (Indole-3-Acetic Acid, IAA) is a key player in nearly every aspect of plant growth and development ranging from cell division and cell elongation to embryogenesis and root formation. The IAA level in specific tissues and cells is regulated by synthesis, conjugation, degradation and transport. Especially long-range polar auxin transport (PAT) has been the subject of numerous studies.
View Article and Find Full Text PDFInt J Cosmet Sci
March 2025
Hangzhou Shiguang Xinya Biotechnology Co., Ltd., Hangzhou, China.
Objective: The study investigated effects of peony callus extracts (PCE) on the protective efficacy against Ultraviolet B (UVB)-induced photoageing, using in vitro and in vivo studies. The research focused on PCE's ability to protect against inflammatory factors, DNA damage and accumulation of senescent cells, along with the evaluation of the extract's potential anti-photoageing benefits to skin.
Methods: Human keratinocyte cell line (HaCaT cells), mast cells and fibroblasts were used to evaluate the role of PCE in anti-photoageing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!