Salmonella is a leading cause of foodborne pathogen which causes intestinal and systemic diseases across the world. Vaccination is the most effective protection against Salmonella, but the identification and design of an effective broad-spectrum vaccine is still a great challenge, because of the multi-serotypes of Salmonella. Reverse vaccinology is a new tool to discovery and design vaccine antigens combining human immunology, structural biology and computational biology with microbial genomics. In this study, reverse vaccinology, an in-silico approach was established to screen appropriate immunogen targets by calculating the immunogenicity score of 583 non-redundant outer membrane and secreted proteins of Salmonella. Herein among 100 proteins identified with top-ranked scores, 15 representative antigens were selected randomly. Applying the sequence conservation test, four proteins (FliK, BcsZ, FhuA and FepA) remained as potential vaccine candidates for in vivo evaluation of immunogenicity and immunoprotection. All four candidates were capable to trigger the immune response and stimulate the production of antiserum in mice. Furthermore, top-ranked proteins including FliK and BcsZ provided wide antigenic coverage among the multi-serotype of Salmonella. The S. Typhimurium LT2 challenge model used in mice immunized with FliK and BcsZ showed a high relative percentage survival (RPS) of 52.74 % and 64.71 % respectively. In conclusion, this study constructed an in-silico pipeline able to successfully pre-screen the vaccine targets characterized by high immunogenicity and protective immunity. We show that reverse vaccinology allowed screening of appropriate broad-spectrum vaccines for Salmonella.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmm.2021.151508 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Punjab, Pakistan.
Rocky Mountain Spotted Fever, caused by the gram-negative intracellular bacteria Rickettsia rickettsii, is a serious tick-borne infection with a fatality rate of 20-30%, if not treated. Since it is the most serious rickettsial disease in North America, modified prevention and treatment strategies are of critical importance. In order to find new therapeutic targets and create multiepitope vaccines, this study integrated subtractive proteomics with reverse vaccinology.
View Article and Find Full Text PDFVet Immunol Immunopathol
December 2024
Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan. Electronic address:
The Hendra virus (HeV) has resulted in epidemics of respiratory and neurological illnesses in animals. Humans have contracted diseases with high fatality rates as a result of infected domestic animals, but effective vaccinations and therapies are currently not available against HeV. Herein, we analyzed the proteome of HeV and constructed an effective and innovative multi-epitope vaccine using immunoinformatics techniques.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
Background: Targeting the TGF-β pathway in tumor therapy has proven challenging due to the highly context-dependent functions of TGF-β. Integrin αvβ8, a pivotal activator of TGF-β, has been implicated in TGF-β signaling within tumors, as demonstrated by the significant anti-tumor effects of anti-αvβ8 antibodies. Nevertheless, the expression profile of αvβ8 remains a subject of debate, and the precise mechanisms underlying the anti-tumor effects of anti-αvβ8 antibodies are not yet fully elucidated.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Henry Jackson Foundation Medical Research International, Nairobi, Kenya.
Artificial Intelligence and Machine Learning (AI/ML) techniques, including reverse vaccinology and predictive models, have already been applied for developing vaccine candidates for COVID-19, HIV, and Hepatitis, streamlining the vaccine development lifecycle from discovery to deployment. The application of AI and ML technologies for improving heath interventions, including drug discovery and clinical development, are expanding across Africa, particularly in South Africa, Kenya, and Nigeria. Further initiatives are required however to expand AI/ML capabilities across the continent to ensure the development of a sustainable ecosystem including enhancing the requisite knowledge base, fostering collaboration between stakeholders, ensuring robust regulatory and ethical frameworks and investment in requisite infrastructure.
View Article and Find Full Text PDFVet J
December 2024
Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China. Electronic address:
Bovine viral diarrhea virus (BVDV) is a significant pathogen that exerts substantial economic influence on the global cattle industry. Developing a safe and effective novel vaccine targeting various BVDV subtypes is critical for controlling BVDV infection. In the study, we created two distinct multi-epitope vaccines by linking highly conserved and dominant cytotoxic T-lymphocytes (CTL), helper T-lymphocytes (HTL), and B-cell epitopes from either the E0 or E2 envelope glycoprotein of diverse BVDV subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!