Orchestration of a complex network of protein interactions drives clathrin-mediated endocytosis (CME). A central role for the AP2 adaptor complex beyond cargo recognition and clathrin recruitment has emerged in recent years. It is now apparent that AP2 serves as a pivotal hub for protein interactions to mediate clathrin coated pit maturation, and couples lattice formation to membrane deformation. As a key driver for clathrin assembly, AP2 complements the attenuating role of clathrin light chain subunits, which enable dynamic lattice rearrangement needed for budding. This review summarises recent insights into AP2 function with respect to CME dynamics and biophysics, and its relationship to the role of clathrin light chains in clathrin assembly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cdev.2021.203714 | DOI Listing |
bioRxiv
December 2024
Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India.
Active enzymes during catalyzing chemical reactions, have been found to generate significant mechanical fluctuations, which can influence the dynamics of their surroundings. These phenomena open new avenues for controlling mass transport in complex and dynamically inhomogeneous environments through localized chemical reactions. To explore this potential, we studied the uptake of transferrin molecules in retinal pigment epithelium (RPE) cells via clathrin-mediated endocytosis.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia.
Cell-penetrating peptides (CPPs) have been employed to enhance the cellular uptake and intracellular delivery of various nanocarriers. Among them, nanoparticles (NPs) have been used as suitable vehicles for delivering different bioactive molecules in the treatment of a diverse range of diseases. Given the pivotal role of the conjugation method of CPPs, this study aims to evaluate the impact of the position of a cell-penetrating motif (LFVCR) on the biocompatibility, cellular uptake, and endosomal escape of magnetite NPs.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia.
Melanoma, known for its aggressive metastatic potential, poses significant treatment challenges. Despite the potent antiproliferative effects of anticancer drugs, systemic toxicity and low water solubility limit their efficacy. This study addresses these challenges by employing magnetite (FeO) nanobioconjugates as a drug delivery system, aimed at enhancing drug solubility and reducing off-target effects in melanoma therapy.
View Article and Find Full Text PDFNat Commun
November 2024
European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany.
Clathrin forms a triskelion, or three-legged, network that regulates cellular processes by facilitating cargo internalization and trafficking in eukaryotes. Its N-terminal domain is crucial for interacting with adaptor proteins, which link clathrin to the membrane and engage with specific cargo. The N-terminal domain contains up to four adaptor-binding sites, though their role in preferential occupancy by adaptor proteins remains unclear.
View Article and Find Full Text PDFRSC Chem Biol
October 2024
Department of Mechanistic Cell Biology, University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology Essen Germany
Self-labeling protein tags are an efficient means to visualize, manipulate, and isolate engineered fusion proteins with suitable chemical probes. The SNAP-tag, which covalently conjugates to benzyl-guanine and -chloropyrimidine derivatives is used extensively in fluorescence microscopy, given the availability of suitable SNAP-ligand-based probes. Here, we extend the applicability of the SNAP-tag to targeted protein degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!