Tyrosyl DNA phosphodiesterase 1 (TDP1) and DNA Ligase IIIα (LigIIIα) are key enzymes in single-strand break (SSB) repair. TDP1 removes 3'-tyrosine residues remaining after degradation of DNA topoisomerase (TOP) 1 cleavage complexes trapped by either DNA lesions or TOP1 inhibitors. It is not known how TDP1 is linked to subsequent processing and LigIIIα-catalyzed joining of the SSB. Here we define a direct interaction between the TDP1 catalytic domain and the LigIII DNA-binding domain (DBD) regulated by conformational changes in the unstructured TDP1 N-terminal region induced by phosphorylation and/or alterations in amino acid sequence. Full-length and N-terminally truncated TDP1 are more effective at correcting SSB repair defects in TDP1 null cells compared with full-length TDP1 with amino acid substitutions of an N-terminal serine residue phosphorylated in response to DNA damage. TDP1 forms a stable complex with LigIII, as well as full-length LigIIIα alone or in complex with the DNA repair scaffold protein XRCC1. Small-angle X-ray scattering and negative stain electron microscopy combined with mapping of the interacting regions identified a TDP1/LigIIIα compact dimer of heterodimers in which the two LigIII catalytic cores are positioned in the center, whereas the two TDP1 molecules are located at the edges of the core complex flanked by highly flexible regions that can interact with other repair proteins and SSBs. As TDP1and LigIIIα together repair adducts caused by TOP1 cancer chemotherapy inhibitors, the defined interaction architecture and regulation of this enzyme complex provide insights into a key repair pathway in nonmalignant and cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318918PMC
http://dx.doi.org/10.1016/j.jbc.2021.100921DOI Listing

Publication Analysis

Top Keywords

tdp1
10
dna
9
direct interaction
8
dna repair
8
tyrosyl dna
8
dna phosphodiesterase
8
dna ligase
8
catalytic domain
8
ssb repair
8
amino acid
8

Similar Publications

Tyrosyl DNA phosphodiesterases 1 and 2 (TDP1 and TDP2), which are enzymes involved in the repair of DNA, are regarded as promising targets for the development of new anticancer drugs. In this study, a series of imidazolidine-2,4-diones, 2,4,5-triones, and 2-thioxoimidazolidine-4,5-diones based on dehydroabietylamine (DHAAm) were synthesized. The inhibitory activity of the new compounds against TDP1 and TDP2, as well as their cytotoxic characteristics, were evaluated.

View Article and Find Full Text PDF

TDP1 represents a promising therapeutic target for overcoming tumor resistance to chemotherapeutic agents: progress and potential.

Bioorg Chem

December 2024

School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China. Electronic address:

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that plays a crucial role in repairing DNA lesions caused by the entrapment of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors exhibit synergistic effects with TOP1 inhibitors in cancer cells, effectively overcoming resistance to TOP1 inhibitors. Therefore, this approach presents a promising strategy for reversing tumor resistance to TOP1 inhibitors.

View Article and Find Full Text PDF

PNKP safeguards stalled replication forks from nuclease-dependent degradation during replication stress.

Cell Rep

December 2024

Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt. Electronic address:

Uncontrolled degradation and collapse of stalled replication forks (RFs) are primary sources of genomic instability, yet the molecular mechanisms for protecting forks from degradation/collapse remain to be fully elaborated. Here, we show that polynucleotide kinase-phosphatase (PNKP) localizes at stalled forks and protects stalled forks from excessive degradation. The loss of PNKP results in nucleolytic degradation of nascent DNA at stalled RFs.

View Article and Find Full Text PDF
Article Synopsis
  • HAP1 is a human cell line that's good for studying gene changes and mutations due to its unique genetic makeup, but it's unusually sensitive to the cancer drug camptothecin.
  • This sensitivity is linked to a problem with TDP1, an enzyme that helps fix certain DNA issues, specifically due to a mutation that disrupts its function.
  • Researchers were able to use CRISPR technology to restore TDP1 in HAP1 cells, creating new cell lines that can be used for deeper studies on how DNA repairs itself in the presence of camptothecin.
View Article and Find Full Text PDF
Article Synopsis
  • - Cationic antimicrobial peptides (AMPs) show potential as both antimicrobial and anticancer agents, and linking them to bioactive molecules may enhance their effectiveness in treating cancer.
  • - In this study, two derivatives of usnic acid were combined with the AMP L-K6 using a new bonding method while both components demonstrated selective activity against cancer cells, specifically targeting the DNA repair enzyme TDP1.
  • - The resulting conjugates showed a range of effects, from decreased activity of the original drugs to increased cytotoxicity against glioblastoma cells, suggesting enhanced therapeutic potential compared to the individual components.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!