Protein oligomerization is one mechanism by which homogenous solutions can separate into distinct liquid phases, enabling assembly of membraneless organelles. Survival Motor Neuron (SMN) is the eponymous component of a large macromolecular complex that chaperones biogenesis of eukaryotic ribonucleoproteins and localizes to distinct membraneless organelles in both the nucleus and cytoplasm. SMN forms the oligomeric core of this complex, and missense mutations within its YG box domain are known to cause Spinal Muscular Atrophy (SMA). The SMN YG box utilizes a unique variant of the glycine zipper motif to form dimers, but the mechanism of higher-order oligomerization remains unknown. Here, we use a combination of molecular genetic, phylogenetic, biophysical, biochemical and computational approaches to show that formation of higher-order SMN oligomers depends on a set of YG box residues that are not involved in dimerization. Mutation of key residues within this new structural motif restricts assembly of SMN to dimers and causes locomotor dysfunction and viability defects in animal models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287954PMC
http://dx.doi.org/10.1093/nar/gkab508DOI Listing

Publication Analysis

Top Keywords

higher-order smn
8
smn oligomers
8
structural motif
8
membraneless organelles
8
smn
6
assembly higher-order
4
oligomers essential
4
essential metazoan
4
metazoan viability
4
viability requires
4

Similar Publications

Tai Chi (TC) practice has been shown to improve both cognitive and physical function in older adults. However, the neural mechanisms underlying the benefits of TC remain unclear. Our primary aims are to explore whether distinct age-related and TC-practice-related relationships can be identified with respect to either temporal or spatial (within/between-network connectivity) differences.

View Article and Find Full Text PDF

Enhanced cerebral blood flow similarity of the somatomotor network in chronic insomnia: Transcriptomic decoding, gut microbial signatures and phenotypic roles.

Neuroimage

August 2024

Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China. Electronic address:

Article Synopsis
  • * The study found that enhanced cerebral blood flow (CBF) in the somatomotor network serves as a crucial link among the different factors related to CI; only CBF showed significant changes in patients compared to healthy controls.
  • * These findings highlight the connection between increased CBF and clinical symptoms of CI, suggesting possible new strategies for treatment and a better understanding of its underlying mechanisms.
View Article and Find Full Text PDF

Background: In Wilson's disease (WD) patients, network connections across the brain are disrupted, affecting multidomain function. However, the details of this neuropathophysiological mechanism remain unclear due to the rarity of WD. In this study, we aimed to investigate alterations in brain network connectivity at the whole-brain level (both intra- and inter-network) in WD patients through independent component analysis (ICA) and the relationship between alterations in these brain network functional connections (FCs) and clinical neuropsychiatric features to understand the underlying pathophysiological and central compensatory mechanisms.

View Article and Find Full Text PDF

The somatosensory-motor network (SMN) not only plays an important role in primary somatosensory and motor processing but is also central to many disorders. However, the SMN heterogeneity related to higher-order systems still remains unclear. Here, we investigated SMN heterogeneity from multiple perspectives.

View Article and Find Full Text PDF

Attention deficit hyperactivity disorder (ADHD) is one of the most widespread mental disorders and often persists from childhood to adulthood, and its symptoms vary with age. In this study, we aim to determine the disrupted dynamic functional network connectivity differences in adult, adolescent, and child ADHD using resting-state functional magnetic resonance imaging (rs-fMRI) data consisting of 35 children (8.64 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!