A Novel Treatment for Giant Congenital Melanocytic Nevi Combining Inactivated Autologous Nevus Tissue by High Hydrostatic Pressure and a Cultured Epidermal Autograft: First-in-Human, Open, Prospective Clinical Trial.

Plast Reconstr Surg

From the Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University; Department of Plastic and Reconstructive Surgery, Kansai Medical University; Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute; Hiroshima University Hospital Center for Integrated Medical Research; Department of Plastic and Reconstructive Surgery, National Hospital Organization Kyoto Medical Center; and JINNO Medical Skin Clinic.

Published: July 2021

Background: Giant congenital melanocytic nevi are large skin lesions associated with a risk of malignant transformation. The authors developed a novel treatment to reconstruct full-thickness skin defects by combining an inactivated nevus as the autologous dermis and a cultured epidermal autograft. The first-in-human trial of this treatment was performed.

Methods: Patients with melanocytic nevi that were not expected to be closed by primary closure were recruited. The full-thickness nevus of the target was removed and inactivated by high hydrostatic pressurization at 200 MPa for 10 minutes. The inactivated nevus was sutured to the original site, and a cultured epidermal autograft was grafted onto it 4 weeks later. Patients were followed for up to 52 weeks.

Results: Ten patients underwent reimplantation of the pressurized nevus, and one patient dropped out. The recurrence of nevus at 52 weeks was not detected by pathological diagnosis in any patients. The L* value at 52 weeks was significantly higher than that of the target nevus. One patient received skin grafting due to contracture of the reconstructed skin. The epithelized area of the reconstructed skin, as the percentage of the original target nevus, was 55.5 ± 19.4 percent at 12 weeks and 85.0 ± 32.4 percent at 52 weeks.

Conclusions: The inactivated nevus caused inflammation and contracture for several months. However, no recurrence was observed, and combination therapy using an inactivated nevus with a cultured epidermal autograft may therefore be a novel treatment of giant congenital melanocytic nevi.

Clinical Question/level Of Evidence: Therapeutic, IV.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0000000000008084DOI Listing

Publication Analysis

Top Keywords

cultured epidermal
16
epidermal autograft
16
inactivated nevus
16
novel treatment
12
giant congenital
12
congenital melanocytic
12
melanocytic nevi
12
nevus
10
treatment giant
8
combining inactivated
8

Similar Publications

Keratinocytes are the primary component of the epidermis, so maintaining the precise balance between proliferation and differentiation is essential for conserving epidermal structure and function. Rosae multiflorae fructus extract (RMFE) has wide application in the cosmetic industry, but the molecular mechanisms underlying beneficial effects on keratinocytes are still not fully understood. In this study, we found that RMFE promoted epidermal differentiation and enhanced the barrier function of normal human epidermal keratinocytes (NHEKs) and three-dimensional epidermis model in culture.

View Article and Find Full Text PDF

Human keratinocytes grown at a gas-permeable interface in vitro stratify correctly to generate engineered human epidermis.

Cytotherapy

December 2024

School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand. Electronic address:

Background: One of the key functions of human skin is to provide a barrier, protecting the body from the surrounding environment and maintaining homeostasis of the internal environment. A mature, stratified epidermis is critical to achieve skin barrier function and is particularly important when producing skin grafts in vitro for wound treatment. For decades epidermal stratification has been achieved in vitro by culturing keratinocytes at an air-liquid interface, triggering proliferating basal keratinocytes to differentiate and form all epidermal layers.

View Article and Find Full Text PDF

Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture.

View Article and Find Full Text PDF

Background: The transcription factor AP1 plays a crucial role in the proliferation, apoptosis, and terminal differentiation of epidermal keratinocytes.

Objective: This study aimed to clarify whether the subunit of AP1, FOSL1 protein, can be used to assess the exacerbation of psoriasis by evaluating its changes in protein and mRNA levels in cultured epidermal keratinocytes and skin specimens of the patients prescribed with bathwater PUVA (Psoralen and UVA) therapy. This study aimed to investigate FOSL1, a subunit of the transcription factor AP-1, as a potential biomarker for psoriasis by examining its protein and mRNA expression in skin specimens from patients undergoing bathwater PUVA (Psoralen and UVA) therapy and cultured epidermal keratinocytes.

View Article and Find Full Text PDF

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!