A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Turning Back the Clock: Artificial Intelligence Recognition of Age Reduction after Face-Lift Surgery Correlates with Patient Satisfaction. | LitMetric

Background: Patients desire face-lifting procedures primarily to appear younger, more refreshed, and attractive. Because there are few objective studies assessing the success of face-lift surgery, the authors used artificial intelligence, in the form of convolutional neural network algorithms alongside FACE-Q patient-reported outcomes, to evaluate perceived age reduction and patient satisfaction following face-lift surgery.

Methods: Standardized preoperative and postoperative (1 year) images of 50 consecutive patients who underwent face-lift procedures (platysmaplasty, superficial musculoaponeurotic system-ectomy, cheek minimal access cranial suspension malar lift, or fat grafting) were used by four neural networks (trained to identify age based on facial features) to estimate age reduction after surgery. In addition, FACE-Q surveys were used to measure patient-reported facial aesthetic outcome. Patient satisfaction was compared to age reduction.

Results: The neural network preoperative age accuracy score demonstrated that all four neural networks were accurate in identifying ages (mean score, 100.8). Patient self-appraisal age reduction reported a greater age reduction than neural network age reduction after a face lift (-6.7 years versus -4.3 years). FACE-Q scores demonstrated a high level of patient satisfaction for facial appearance (75.1 ± 8.1), quality of life (82.4 ± 8.3), and satisfaction with outcome (79.0 ± 6.3). Finally, there was a positive correlation between neural network age reduction and patient satisfaction.

Conclusion: Artificial intelligence algorithms can reliably estimate the reduction in apparent age after face-lift surgery; this estimated age reduction correlates with patient satisfaction.

Clinical Question/level Of Evidence: Diagnostic, IV.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0000000000008020DOI Listing

Publication Analysis

Top Keywords

age reduction
32
patient satisfaction
16
neural network
16
artificial intelligence
12
age
12
face-lift surgery
12
reduction
9
correlates patient
8
reduction patient
8
neural networks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!