Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Epilepsy is a common clinical disease. Severe epilepsy can be life-threatening in certain unexpected conditions, so it is important to detect seizures instantly with a wearable device and to provide treatment within the golden window. The observation of the electroencephalography (EEG) signal is an imperative method to assist correct epilepsy diagnosis. To detect and classify EEG signals, a convolutional neural network (CNN) is an intuitive and appropriate method that borrows expertise from neurologists. However, the computational cost of training and inference on artificial intelligence (AI)-based solutions make software-only and hardware-only solutions incompetent for real-time monitoring on embedded devices. Hence, this study proposes three key contributions for the challenge, namely, an algorithm framework to provide real-time epilepsy detection, a dedicated coprocessor chip implementing this framework to enable real time epilepsy detection to offload and accelerate detection algorithm, and a custom interface with the coprocessor and reduced instruction set computer-V (RISC-V) instructions to reconfigure the coprocessor and transfer data. The epilepsy detection framework is implemented in 11-layer CNN. The proposed epilepsy detection algorithm performs 97.8% accuracy for floating-point and 93.5% for fixed-point operations through animal experiments with lab rats. The RISC-V CNN coprocessor is fabricated in the TSMC 0.18-μm CMOS process. For each classification, the coprocessor consumes 51 nJ/class. and 0.9 µJ/class. energy on data transfer and inference, respectively. The detection latency on the chip is 0.012 s. With the integration of the hardware coprocessor, AI algorithms can be applied to epilepsy detection for real-time monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2021.3092744 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!