Selective agonism of the estrogen receptor (ER) subtypes, ERα and ERβ, has historically been difficult to achieve due to the high degree of ligand-binding domain structural similarity. Multiple efforts have focused on the use of classical organic scaffolds to model 17β-estradiol geometry in the design of ERβ selective agonists, with several proceeding to various stages of clinical development. Carborane scaffolds offer many unique advantages including the potential for novel ligand/receptor interactions but remain relatively unexplored. We synthesized a series of -carborane estrogen receptor agonists revealing an ERβ selective structure-activity relationship. We report ERβ agonists with low nanomolar potency, greater than 200-fold selectivity for ERβ over ERα, limited off-target activity against other nuclear receptors, and only sparse CYP450 inhibition at very high micromolar concentrations. The pharmacological properties of our -carborane ERβ selective agonists measure favorably against clinically developed ERβ agonists and support further evaluation of carborane-based selective estrogen receptor modulators.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.1c00555DOI Listing

Publication Analysis

Top Keywords

estrogen receptor
16
erβ selective
12
structure-activity relationship
8
selective estrogen
8
receptor agonists
8
selective agonists
8
erβ agonists
8
erβ
7
selective
6
agonists
6

Similar Publications

The oncoprotein c-Myc is expressed in all breast cancer subtypes, but its expression is higher in triple-negative breast cancer (TNBC) compared to estrogen receptor (ER+), progesterone receptor (PR+), or human epidermal growth factor receptor 2 (HER2+) positive tumors. The c-Myc gene is crucial for tumor progression and therapy resistance, impacting cell proliferation, differentiation, senescence, angiogenesis, immune evasion, metabolism, invasion, autophagy, apoptosis, chromosomal instability, and protein biosynthesis. Targeting c-Myc has emerged as a potential therapeutic strategy for TNBC, a highly aggressive and deadly breast cancer form.

View Article and Find Full Text PDF

The potential endocrine-disrupting of fluorinated pesticides and molecular mechanism of EDPs in cell models.

Ecotoxicol Environ Saf

January 2025

State Key Lab, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China. Electronic address:

Environmental endocrine disruptors constitute a category of exogenous compounds that interfere with the endocrine system's functions in organisms or cells. As a class of particularly representative endocrine-disrupting chemicals, the accumulation of per- and polyfluoroalkyl substances potentially leads to adverse health effects, including hormonal disruptions, developmental issues, and cancer. However, the classification of these disruptors is intricate, and the data on their potential health risks is scattered.

View Article and Find Full Text PDF

Breast cancer (BC) commonly expresses estrogen receptors (ERs); hence, endocrine therapy targeting ERs is considered an effective treatment. Tamoxifen (TAM) resistance is an essential clinical complication leading to cancer progression and metastasis. This study investigated MicroRNAs (miRNAs) potentially implicated in drug resistance (miR-182-3p, miR-382-3p) or sensitivity (miR-93, miR- 142- 3p).

View Article and Find Full Text PDF

Zoledronic acid (ZA), a bisphosphonate, is commonly used in breast cancer patients with bone metastases to treat hypercalcemia and osteolysis. Recent studies showed the anti-cancer effects of ZA in breast cancer. This study further explored the synergistic effects of sequential and nonsequential ZA and doxorubicin (DOX) administration on estrogen receptor (ER)-positive and -negative breast cancer cell lines.

View Article and Find Full Text PDF

Plasma cell-free DNA (cfDNA) analysis to track estrogen receptor 1 (ESR1) mutations is highly beneficial for the identification of tumor molecular dynamics and the improvement of personalized treatments for patients with metastatic breast cancer (MBC). Plasma-cfDNA is, up to now, the most frequent liquid biopsy analyte used to evaluate ESR1 mutational status. Circulating tumor cell (CTC) enumeration and molecular characterization analysis provides important clinical information in patients with MBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!