A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative comparison of data-driven gating and external hardware gating for F-FDG PET-MRI in patients with esophageal tumors. | LitMetric

Background: Respiratory motion during PET imaging reduces image quality. Data-driven gating (DDG) based on principal component analysis (PCA) can be used to identify respiratory signals. The use of DDG, without need for external devices, would greatly increase the feasibility of using respiratory gating in a routine clinical setting. The objective of this study was to evaluate data-driven gating in relation to external hardware gating and regular static image acquisition on PET-MRI data with respect to SUV and lesion volumes.

Methods: Sixteen patients with esophageal or gastroesophageal cancer (Siewert I and II) underwent a 6-min PET scan on a Signa PET-MRI system (GE Healthcare) 1.5-2 h after injection of 4 MBq/kg F-FDG. External hardware gating was done using a respiratory bellow device, and DDG was performed using MotionFree (GE Healthcare). The DDG raw data files and the external hardware-gating raw files were created on a Matlab-based toolbox from the whole 6-min scan LIST-file. For comparison, two 3-min static raw files were created for each patient. Images were reconstructed using TF-OSEM with resolution recovery with 2 iterations, 28 subsets, and 3-mm post filter. SUV and lesion volume were measured in all visible lesions, and noise level was measured in the liver. Paired t-test, linear regression, Pearson correlation, and Bland-Altman analysis were used to investigate difference, correlation, and agreement between the methods.

Results: A total number of 30 lesions were included in the study. No significant differences between DDG and external hardware-gating SUV or lesion volumes were found, but the noise level was significantly reduced in the DDG images. Both DDG and external hardware gating demonstrated significantly higher SUV (9.4% for DDG, 10.3% for external hardware gating) and smaller lesion volume (- 5.4% for DDG, - 6.6% for external gating) in comparison with non-gated static images.

Conclusions: Data-driven gating with MotionFree for PET-MRI performed similar to external device gating for esophageal lesions with respect to SUV and lesion volume. Both gating methods significantly increased the SUV and reduced the lesion volume in comparison with non-gated static acquisition. DDG resulted in reduced image noise compared to external device gating and static images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8218070PMC
http://dx.doi.org/10.1186/s41824-021-00099-xDOI Listing

Publication Analysis

Top Keywords

external hardware
20
hardware gating
20
data-driven gating
16
suv lesion
16
lesion volume
16
gating
14
ddg external
12
external
11
ddg
10
patients esophageal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!