Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This article presents the results of cell-surface interactions on polydimethylsiloxane (PDMS)-based substrates coated with nanoscale gold (Au) thin films. The surfaces of PDMS and PDMS-magnetite (MNP)-based substrates were treated with UV-ozone, prior to thermal vapor deposition (sputter-coated) of thin films of titanium (Ti) onto the substrates to improve the adhesion of Au coatings. The thin layer of Ti was thermally evaporated to improve interfacial adhesion, which was enhanced by a 40-nm thick film microwrinkled/buckled wavy layer of Au, that was coated to enhance cell-surface interactions and protein absorption. Cell-surface interactions were studied on the hybrid surfaces using a combination of optical and fluorescence microscopy. Consequently, cell proliferation and surface cytotoxicity (of the sputter-coated PDMS surfaces) were elucidated by characterizing the metabolic activity in the presence of breast cancer and normal breast cells. The photothermal conversion efficiency associated with laser-materials interactions with the PDMS/PDMS-magnetite-based composites was shown to have an optimum efficiency of ~31.8%. The implications of the results are discussed for potential applications of PDMS nanocomposites in implantable biomedical devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.37254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!