Background: Bradykinesia is the defining motor feature of Parkinson's disease (PD). There are limitations to its assessment using standard clinical rating scales, especially in the early stages of PD when a floor effect may be observed.

Objective: To develop a quantitative method to track repetitive tapping movements and to compare people in the early stages of PD, healthy controls, and individuals with idiopathic anosmia.

Methods: This was a cross-sectional study of 99 participants (early-stage PD = 26, controls = 64, idiopathic anosmia = 9). For each participant, repetitive finger tapping was recorded over 20 seconds using a smartphone at 240 frames per second. From each video, amplitude between fingers, frequency (number of taps per second), and velocity (distance travelled per second) was extracted. Clinical assessment was based on the motor section of the MDS-UPDRS.

Results: People in the early stage of PD performed the task with slower velocity (p < 0.001) and with greater frequency slope than controls (p = 0.003). The combination of reduced velocity and greater frequency slope obtained the best accuracy to separate early-stage PD from controls based on metric thresholds alone (AUC = 0.88). Individuals with anosmia exhibited slower velocity (p = 0.001) and smaller amplitude (p < 0.001) compared with controls.

Conclusion: We present a simple, proof-of-concept method to detect early motor dysfunction in PD. Mean tap velocity appeared to be the best parameter to differentiate patients with PD from controls. Patients with anosmia also showed detectable differences in motor performance compared with controls which may suggest that some were in the prodromal phase of PD.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JPD-212683DOI Listing

Publication Analysis

Top Keywords

repetitive tapping
8
parkinson's disease
8
early stages
8
people early
8
slow motion
4
motion analysis
4
analysis repetitive
4
tapping smart
4
smart test
4
test measuring
4

Similar Publications

Task-relevant stimulus design improves P300-based brain-computer interfaces.

J Neural Eng

December 2024

Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, Republic of Korea, Ulsan, 44919, Korea (the Republic of).

Objective: In the pursuit of refining P300-based brain-computer interfaces (BCIs), our research aims to propose a novel stimulus design focused on selective attention and task relevance to address the challenges of P300-based BCIs, including the necessity of repetitive stimulus presentations, accuracy improvement, user variability, and calibration demands.

Approach: In the oddball task for P300-based BCIs, we develop a stimulus design involving task-relevant dynamic stimuli implemented as finger-tapping to enhance the elicitation and consistency of event-related potentials (ERPs). We further improve the performance of P300-based BCIs by optimizing ERP feature extraction and classification in offline analyses.

View Article and Find Full Text PDF

The high-quality genome of coconut (Cocos nucifera L.) is a crucial resource for enhancing agronomic traits and studying genome evolution within the Arecaceae family. We sequenced the Chowghat Green Dwarf cultivar, which is resistant to the root (wilt) disease, utilizing Illumina, PacBio, ONT, and Hi-C technologies to produce a chromosome-level genome of ~ 2.

View Article and Find Full Text PDF

Simultaneous EEG recording of cortical tracking of speech and movement kinematics.

Neuroscience

November 2024

Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.

Rationale: Cortical activity is coupled with streams of sensory stimulation. The coupling with the temporal envelope of heard speech is known as the cortical tracking of speech (CTS), and that with movement kinematics is known as the corticokinematic coupling (CKC). Simultaneous measurement of both couplings is desirable in clinical settings, but it is unknown whether the inherent dual-tasking condition has an impact on CTS or CKC.

View Article and Find Full Text PDF

Emergent tremor in Parkinson's disease (PD) can occur during sustained postures or movements that are different from action tremor. Tremor can contaminate the clinical rating of bradykinesia during finger tapping. Currently, there is no reliable way of isolating emergent tremor and measuring the cardinal motor symptoms based on voluntary movements only.

View Article and Find Full Text PDF

We recently showed that vestibular stimulation can produce a long-lasting alleviation of motor features in Parkinson's disease. Here we investigated whether components of the motor related cortical response that are commonly compromised in Parkinson's - the Bereitschaftspotential and mu-rhythm event-related desynchronization - are modulated by concurrent, low frequency galvanic vestibular stimulation (GVS) during repetitive limb movement amongst 17 individuals with idiopathic Parkinson's disease. Relative to sham, GVS was favourably associated with higher amplitudes during the late and movement phases of the Bereitschaftspotential and with a more pronounced decrease in spectral power within the mu-rhythm range during finger-tapping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!