Through this study, we aimed to develop a new analytical method for identification and quantification of sugars and cyclitols isolated from different morphological parts of L (). Accelerated solvent extraction with water was involved for targets extraction. Solid phase extraction was used for purification and preconcentration, while high performance liquid chromatography with evaporative light scattering detector (HPLC-ELSD) was used for chromatographic analyses. A short method of only 30 min for a single analysis was developed finally. The obtained results, allowed for quantification of eight targets, i.e., three cyclitols (D-pinitol, allo-inositol and scyllo-inositol) and five sugars (xylose, D-mannose, D-fructose, D-glucose and sucrose) that were determined simultaneously using a single analysis. The developed method can be applied in industry as a routine method for analysis of sugars and cyclitols from different sources.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2021.1944136DOI Listing

Publication Analysis

Top Keywords

identification quantification
8
isolated morphological
8
morphological parts
8
sugars cyclitols
8
single analysis
8
analysis developed
8
cyclitols
4
quantification cyclitols
4
sugars
4
cyclitols sugars
4

Similar Publications

Accurate 3D characterization of osteocyte lacunae is important when investigating the role of osteocytes under various physiological and pathological conditions but remains a challenge. With the continued development of laboratory X-ray micro-computed tomography, an increasing number of studies employ these techniques beyond traditional bone morphometry to quantify osteocyte lacunae. However, there is a lack of knowledge on the effect of measurement parameters on the image quality and resolution and in turn the osteocyte lacunae quantification.

View Article and Find Full Text PDF

Objective: This study investigated the fungal contamination profile of cocoa beans from cocoa-growing regions in Ghana, with particular emphasis on the potential impact of ochratoxigenic species.

Methods: A total of 104 fermented and dried cocoa beans were randomly collected from farmers for analysis. Fungal isolation was conducted using potato dextrose agar and malt extract agar media.

View Article and Find Full Text PDF

Two-Phase Extraction for Comprehensive Analysis of the Plant Metabolome by NMR.

Methods Mol Biol

January 2025

Grupo Metabolômica, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil.

Metabolomics is the area of research, which strives to obtain complete metabolic fingerprints, to detect differences between them and to provide hypothesis to explain those differences (Schripsema J, Dagnino D, Handbook of chemical and biological plant analytical methods. Wiley, New York, 2015). However, obtaining complete metabolic fingerprints is not an easy task.

View Article and Find Full Text PDF

The challenge with synthetically modified biochars is that they are notoriously difficult to characterize, and a new characterization approach that circumvents the challenges posed by overlapping bands in IR spectra is needed. We report multinuclear NMR approaches successful in the easy identification and quantification of covalently-bound functional groups on the biochar surface using P{H} CPMAS NMR spectroscopy.

View Article and Find Full Text PDF

Background: Coronavirus disease (COVID-19) quickly spread around the world after its initial identification in Wuhan, China in 2019 and became a global public health crisis. COVID-19 related hospitalizations and deaths as important disease outcomes have been investigated by many studies while less attention has been given to the relationship between these two outcomes at a public health unit level. In this study, we aim to establish the relationship of counts of deaths and hospitalizations caused by COVID-19 over time across 34 public health units in Ontario, Canada, taking demographic, geographic, socio-economic, and vaccination variables into account.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!