AI Article Synopsis

  • Motor imagery (MI) is crucial for brain-computer interfaces (BCIs), but controlling and acquiring it effectively poses significant challenges for users.
  • The effectiveness of MI-BCI systems largely relies on how well subjects can perform MI, necessitating improvements in training and evaluation methods for MI capabilities.
  • Current research mostly focuses on decoding algorithms and overlooks the importance of understanding and enhancing the mental processes behind MI, highlighting the need for objective evaluation techniques and less time-consuming training strategies.

Article Abstract

Motor imagery (MI) is an important paradigm of driving brain computer interface (BCI). However, MI is not easy to control or acquire, and the performance of MI-BCI depends heavily on the performance of the subjects' MI. Therefore, the correct execution of MI mental activities, ability evaluation and improvement methods play important and even critical roles in the improvement and application of MI-BCI system's performance. However, in the research and development of MI-BCI, the existing researches mainly focus on the decoding algorithm of MI, but do not pay enough attention to the above three aspects of MI mental activities. In this paper, these problems of MI-BCI are discussed in detail, and it is pointed out that the subjects tend to use visual motor imagery as kinesthetic motor imagery. In the future, we need to develop some objective, quantitatively visualized MI ability evaluation methods, and develop some effective and less time-consumption training methods to improve MI ability. It is also necessary to solve the differences and commonness of MI problems between and within individuals and MI-BCI illiteracy to a certain extent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927765PMC
http://dx.doi.org/10.7507/1001-5515.202101037DOI Listing

Publication Analysis

Top Keywords

motor imagery
16
improvement methods
8
mental activities
8
ability evaluation
8
mi-bci
5
[execution assessment
4
assessment improvement
4
methods
4
motor
4
methods motor
4

Similar Publications

Motor Imagery (MI) electroencephalographic (EEG) signal classification is a pioneer research branch essential for mobility rehabilitation. This paper proposes an end-to-end hybrid deep network "Spatio Temporal Inception Transformer Network (STIT-Net)" model for MI classification. Discrete Wavelet Transform (DWT) is used to derive the alpha (8-13) Hz and beta (13-30) Hz EEG sub bands which are dominant during motor tasks to enhance the performance of the proposed work.

View Article and Find Full Text PDF

Objective: Among all BCI paradigms, motion imagery (MI) has gained favor among researchers because it allows users to control external devices by imagining movements rather than actually performing actions. This property holds important promise for clinical applications, especially in areas such as stroke rehabilitation. Electroencephalogram (EEG) signals and functional near-infrared spectroscopy (fNIRS) signals are two of the more popular neuroimaging techniques for obtaining MI signals from the brain.

View Article and Find Full Text PDF

The complementary strengths of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have driven extensive research into integrating these two noninvasive modalities to better understand the neural mechanisms underlying cognitive, sensory, and motor functions. However, the precise neural patterns associated with motor functions, especially imagined movements, remain unclear. Specifically, the correlations between electrophysiological responses and hemodynamic activations during executed and imagined movements have not been fully elucidated at a whole-brain level.

View Article and Find Full Text PDF

The increasing adoption of wearable technologies highlights the potential of electroencephalogram (EEG) signals for biometric recognition. However, the intrinsic variability in cross-session EEG data presents substantial challenges in maintaining model stability and reliability. Moreover, the diversity within single-task protocols complicates achieving consistent and generalized model performance.

View Article and Find Full Text PDF

Enhancing motor disability assessment and its imagery classification is a significant concern in contemporary medical practice, necessitating reliable solutions to improve patient outcomes. One promising avenue is the use of brain-computer interfaces (BCIs), which establish a direct communication pathway between users and machines. This technology holds the potential to revolutionize human-machine interaction, especially for individuals diagnosed with motor disabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!