Polybutylene succinate artificial scaffold for peripheral nerve regeneration.

J Biomed Mater Res B Appl Biomater

Centro Mediterraneo Ricerca e Training (Ce.Me.Ri.T), Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy.

Published: January 2022

Regeneration and recovery of nerve tissues are a great challenge for medicine, and positively affect the quality of life of patients. The development of tissue engineering offers a new approach to the problem with the creation of multifunctional artificial scaffolds that act on various levels in the damaged tissue, providing physical and biochemical support for the growth of nerve cells. In this study, the effects of the use of a tubular scaffold made of polybutylene succinate (PBS), surgically positioned at the level of a sciatic nerve injured in rat, between the proximal stump and the distal one, was investigated. Scaffolds characterization was carried out by scanning electron microscopy and X-ray microcomputed tomography and magnetic resonance imaging, in vivo. The demonstration of the nerve regeneration was based on the evaluation of electroneurography, measuring the weight of gastrocnemius and tibialis anterior muscles, histological examination of regenerated nerves and observing the recovery of the locomotor activity of animals. The PBS tubular scaffold minimized iatrogenic trauma on the nerve, acting as a directional guide for the regenerating fibers by conveying them toward the distal stump. In this context, neurotrophic and neurotropic factors may accumulate and perform their functions, while invasion by macrophages and scar tissue is hampered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290626PMC
http://dx.doi.org/10.1002/jbm.b.34896DOI Listing

Publication Analysis

Top Keywords

polybutylene succinate
8
nerve regeneration
8
tubular scaffold
8
nerve
6
succinate artificial
4
artificial scaffold
4
scaffold peripheral
4
peripheral nerve
4
regeneration regeneration
4
regeneration recovery
4

Similar Publications

The inherent heterogeneity, poor compatibility with polymers, and dark color of lignin limit its application in composites. In this study, original lignin (OL) was fractionated sequentially using four green organic solvents to obtain lignin fractions with different chemical structures. These well-defined lignin fractions were then blended with polybutylene succinate (PBS) to fabricate biocomposites.

View Article and Find Full Text PDF

First evidence of molecular response of the shrimp Hippolyte inermis to biodegradable microplastics.

J Hazard Mater

December 2024

Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Via Francesco Buonocore, 42, Ischia 80077, Italy.

The increasing demand for sustainable alternatives to conventional plastics has propelled the interest in bioplastics. A few papers reported on the effects of plastics on crustaceans, but no indication about biodegradable polymers is available. Hippolyte inermis Leach, 1816 is a protandric shrimp commonly living on leaves of the seagrass Posidonia oceanica, in the Mediterranean Sea.

View Article and Find Full Text PDF

Template-Assisted Electrospinning and 3D Printing of Multilayered Hierarchical Vascular Grafts.

J Biomed Mater Res B Appl Biomater

January 2025

Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland.

Fabricating complex hierarchical structures mimicking natural vessels and arteries is pivotal for addressing problems of cardiovascular diseases. Various fabrication strategies have been explored to achieve this goal, each contributing unique advantages and challenges to the development of functional vascular grafts. In this study, a three-layered tubular structure resembling vascular grafts was fabricated using biocompatible and biodegradable copolymers of poly(butylene succinate) (PBS) using advanced manufacturing techniques.

View Article and Find Full Text PDF

Ecotoxicity of Biodegradable Microplastics and Bio-based Microplastics: A Review of in vitro and in vivo Studies.

Environ Manage

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.

As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants.

View Article and Find Full Text PDF

Microplastics alter the migration and transformation of vanadium in the riverine sediment environment.

Sci Total Environ

December 2024

MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China. Electronic address:

Article Synopsis
  • Microplastics (MPs), particularly biodegradable and non-degradable types, can significantly affect the behavior of vanadium in riverine environments, impacting its movement and transformation.
  • Research revealed that after adding MPs to vanadium-rich sediment, the amount of vanadium in pores decreased while it increased in overlying water, especially with biodegradable MPs.
  • The study highlighted that the presence of biodegradable MPs promoted the growth of specific microbial communities that enhance heavy metal resistance, which in turn affects the chemical dynamics within sediments and increases the mobility of vanadium.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!