Puerarin attenuates intracerebral hemorrhage-induced early brain injury possibly by PI3K/Akt signal activation-mediated suppression of NF-κB pathway.

J Cell Mol Med

Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China.

Published: August 2021

Intracerebral hemorrhage (ICH) can induce intensively oxidative stress, neuroinflammation, and brain cell apoptosis. However, currently, there is no highly effective treatment available. Puerarin (PUE) possesses excellent neuroprotective effects by suppressing the NF-κB pathway and activating the PI3K/Akt signal, but its role and related mechanisms in ICH-induced early brain injury (EBI) remain unclear. In this study, we intended to observe the effects of PUE and molecular mechanisms on ICH-induced EBI. ICH was induced in rats by collagenase IV injection. PUE was intraperitoneally administrated alone or with simultaneously intracerebroventricular injection of LY294002 (a specific inhibitor of the PI3K/Akt signal). Neurological deficiency, histological impairment, brain edema, hematoma volume, blood-brain barrier destruction, and brain cell apoptosis were evaluated. Western blot, immunohistochemistry staining, reactive oxygen species (ROS) measurement, and enzyme-linked immunosorbent assay were performed. PUE administration at 50 mg/kg and 100 mg/kg could significantly reduce ICH-induced neurological deficits and EBI. Moreover, PUE could notably restrain ICH-induced upregulation of the NF-κB pathway, pro-inflammatory cytokines, ROS level, and apoptotic pathway and activate the PI3K/Akt signal. However, LY294002 delivery could efficaciously weaken these neuroprotective effects of PUE. Overall, PUE could attenuate ICH-induced behavioral defects and EBI possibly by PI3K/Akt signal stimulation-mediated inhibition of the NF-κB pathway, and this made PUE a potential candidate as a promising therapeutic option for ICH-induced EBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358853PMC
http://dx.doi.org/10.1111/jcmm.16679DOI Listing

Publication Analysis

Top Keywords

pi3k/akt signal
20
nf-κb pathway
16
early brain
8
brain injury
8
brain cell
8
cell apoptosis
8
pue
8
neuroprotective effects
8
mechanisms ich-induced
8
effects pue
8

Similar Publications

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

Acetaminophen induced acute liver injury (ALI) has a high incidence and is a serious medical problem, but there is a lack of effective treatment. The enterohepatic axis is one of the targets of recent attention due to its important role in liver diseases. Disulfiram (DSF) is a multitarget drug that has been proven to play a role in a variety of liver diseases and can affect intestinal flora, but whether it can alleviate ALI is not clear.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence.

View Article and Find Full Text PDF

Molecular Mechanism of N-Acetylcysteine Regulating Proliferation and Hormone Secretion of Granulosa Cells in Sheep.

Reprod Domest Anim

January 2025

Tianzhu County Animal Husbandry Technology Extension Station, Tianzhu, Gansu, China.

Granulosa cells (GCs) are pivotal in the development of ovarian follicles, serving not only as supportive cells but also as the primary producers of steroid hormones. The proliferation of these cells and the synthesis of steroid hormones are crucial for follicular development and atresia. In our study, GCs were isolated using follicular fluid aspiration and subsequently identified through immunofluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!