The piezoelectric response of bone at the submicron scale is analyzed under mechanical loadings using the finite element (FE) method. A new algorithm is presented to virtually reconstruct realistic bone nanostructures, consisting of collagen fibrils embedded in a hydroxyapatite mineral network. This algorithm takes into account potential misalignments between fibrils, as well the porous structure of the mineral phase. A parallel non-iterative mesh generation algorithm is utilized to create high-fidelity FE models for several representative volume elements (RVEs) of the bone with various fibrils volume fractions and misalignments. The piezoelectric response of each RVE is simulated under three types of loading: the longitudinal compression, lateral compression, and shear. The resulting homogenized stress and electric field in RVEs with aligned fibrils showed a linear variation with the fibrils volume fraction under all loading conditions. For RVEs with misaligned fibrils, although more oscillations were observed in homogenized results, their difference with the results of RVEs with aligned fibrils subject to lateral compression and shear loadings were negligible. However, under longitudinal compression, the electric field associated with RVEs with misaligned fibrils was notably higher than that of RVEs with aligned fibrils for the same volume fraction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10237-021-01470-4 | DOI Listing |
Nat Nanotechnol
January 2025
Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, China.
Skyrmions can form regular arrangements, so-called skyrmion crystals (SkXs). A mode with multiple wavevectors q then describes the arrangement. While magnetic SkXs, which can emerge in the presence of Dzyaloshinskii-Moriya interaction, are well established, polar skyrmion lattices are still elusive.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi 201314, India.
Cancer cells produce extracellular vesicles (EVs) coated with an anionic sugar polymer, hyaluronan (HA), in the extracellular matrix. Hyaluronan is an established cancer biomarker in several cancer types. In this work, we thoroughly investigated the electrical properties of HA-coated EVs using advanced scanning probe microscopy (SPM) based nanoelectrical modes, which include EFM (electrostatic force microscopy), KPFM (Kelvin probe force microscopy), PFM (piezoresponse force microscopy) and C-AFM (conductive atomic force microscopy).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
Two-dimensional (2D) carbon allotropes, together with their binary and ternary counterparts, have attracted substantial research interest due to their peculiar geometries and properties. Among them, grapheneplus, a derivative of penta-graphene, has been proposed to exhibit unusual mechanical and electronic behaviour. In this work, we perform a comprehensive first-principles study on its isoelectronic and isostructural analogue, a grapheneplus-like BCN (gp-BCN) monolayer.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China. Electronic address:
Monitoring cardiac rhythm is crucial for diagnosis of heart failure. However, the deficient sensitivity of polyvinylidene fluoride (PVDF) sensors impede their application in monitoring of cardiac rhythm due to the limited piezoelectricity. Here, doping of CoFeO and aligning fibers were jointly adopted to enhance the piezoelectricity of PVDF, attributed to the transformation of α-PVDF to β-PVDF from 51.
View Article and Find Full Text PDFSci Adv
January 2025
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy.
While piezoelectric sensing and energy-harvesting devices still largely rely on inorganic components, biocompatible and biodegradable piezoelectric materials, such as cellulose nanocrystals, might constitute optimal and sustainable building blocks for a variety of applications in electronics and transient implants. To this aim, however, effective methods are needed to position cellulose nanocrystals in large and high-performance architectures. Here, we report on scalable assemblies of cellulose nanocrystals in multilayered piezoelectric systems with exceptional response, for various application scopes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!