Objectives: This systematic review focuses on the use of the in vitro hollow fibre infection model (HFIM) for microbial culture. We summarize the direction of the field to date and propose best-practice principles for reporting of the applications.
Methods: Searches in six databases (MEDLINE®, EMBASE®, PubMed®, BIOSIS®, SCOPUS® and Cochrane®) up to January 2020 identified 129 studies meeting our inclusion criteria. Two reviewers independently assessed and extracted data from each publication. The quality of reporting of microbiological and technical parameters was analysed.
Results: Forty-seven out of 129 (36.4%) studies did not report the minimum pharmacokinetic parameters required in order to replicate the pharmacokinetic profile of HFIM experiments. Fifty-three out of 129 (41.1%) publications did not report the medium used in the HFIM. The overwhelming majority of publications did not perform any technical repeats [107/129 (82.9%)] or biological repeats [97/129 (75.2%)].
Conclusions: This review demonstrates that most publications provide insufficient data to allow for results to be evaluated, thus impairing the reproducibility of HFIM experiments. Therefore, there is a clear need for the development of laboratory standardization and improved reporting of HFIM experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361333 | PMC |
http://dx.doi.org/10.1093/jac/dkab160 | DOI Listing |
J Antimicrob Chemother
December 2024
Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.
Background: MDR Gram-negative bacteria, such as ESBL-producing and carbapenemase-producing Klebsiella pneumoniae, represent major global health threats. Treatment options are limited due to increasing resistance and slowed development of novel antimicrobials, making it necessary to apply effective combination therapies based on approved antibiotics.
Objectives: To quantitatively evaluate the synergistic potential of meropenem and fosfomycin against carbapenem-resistant K.
J Antimicrob Chemother
May 2024
Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for Sexually Transmitted Infections, Örebro University, Örebro, Sweden.
Background: Antimicrobial resistance in Neisseria gonorrhoeae is threatening the gonorrhoea treatment, and optimizations of the current ceftriaxone-treatment regimens are crucial. We evaluated the pharmacodynamics of ceftriaxone single-dose therapy (0.125-1 g) against ceftriaxone-susceptible and ceftriaxone-resistant gonococcal strains, based on EUCAST ceftriaxone-resistance breakpoint (MIC > 0.
View Article and Find Full Text PDFJAC Antimicrob Resist
April 2024
Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
Background: It is important to optimize dosing schemes of antibiotics to maximize the probability of therapeutic success. The recommended pharmacokinetic/pharmacodynamic (PK/PD) index for piperacillin/tazobactam therapy in clinical studies ranges widely (50%-100% ). Dosing schemes failing to achieve PK/PD targets may lead to negative treatment outcomes.
View Article and Find Full Text PDFFront Pharmacol
December 2023
WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Antimicrobial resistance in the sexually transmitted bacterium is compromising the management and control of gonorrhea globally. Optimized use and enhanced stewardship of current antimicrobials and development of novel antimicrobials are imperative. The first in class zoliflodacin (spiropyrimidinetrione, DNA Gyrase B inhibitor) is a promising novel antimicrobial in late-stage clinical development for gonorrhea treatment, i.
View Article and Find Full Text PDFClin Pharmacol Ther
April 2024
School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!