A flow cytometry-based assay for serological detection of anti-spike antibodies in COVID-19 patients.

STAR Protoc

Infectious Diseases Laboratories (ID Labs), Agency for Science, Technology and Research (A∗STAR), Immunos, Biopolis, Singapore 138648, Singapore.

Published: September 2021

One of the key public health strategies in coronavirus 2019 disease (COVID-19) management is the early detection of infected individuals to limit the transmission. As a result, serological assays have been developed to complement PCR-based assays. Here, we report the development of a flow cytometry-based assay to detect antibodies against full-length SARS-CoV-2 spike protein (S protein) in patients with COVID-19. The assay is time-efficient and sensitive, being able to capture the wider repertoire of antibodies against the S protein. For complete details on the use and execution of this protocol, please refer to Goh et al. (2021).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214198PMC
http://dx.doi.org/10.1016/j.xpro.2021.100671DOI Listing

Publication Analysis

Top Keywords

flow cytometry-based
8
cytometry-based assay
8
assay serological
4
serological detection
4
detection anti-spike
4
anti-spike antibodies
4
antibodies covid-19
4
covid-19 patients
4
patients key
4
key public
4

Similar Publications

Protocol for assessing immune-target cell interactions using a single-cell cytotoxicity assay.

STAR Protoc

January 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China. Electronic address:

Standard flow cytometry-based assays can determine the cytotoxicity of immune effector cells, but it is challenging to monitor the dynamic processes of cytotoxicity. Here, we present a protocol for continuous observation of natural killer (NK) cell-mediated cytotoxicity with microwell arrays using an automated microscope. We describe steps for isolating and labeling primary NK cells, loading cells onto microwell arrays, monitoring target wells, and image analysis.

View Article and Find Full Text PDF

Unlabelled: Di(2-ethhylhexyl) phthalate (DEHP) is a common plastic rubberizer. DEHP leaches from plastic matrices and is under increasing scrutiny as numerous studies have linked it to negative human health manifestations. Coxsackievirus B3 (CVB) is a human pathogen that typically causes subclinical infections but can sometimes cause severe diseases such as pancreatitis, myocarditis, and meningoencephalitis.

View Article and Find Full Text PDF

spp. are facultative pathogens that contribute to the pathogenesis of multiple bovine diseases, including the bovine respiratory disease complex, and have been shown to form biofilms. Biofilm formation is associated with increased antibiotic resistance in many organisms, but accurate determination of antimicrobial susceptibility in biofilms is challenging.

View Article and Find Full Text PDF

Background: Concurrent (STK11, KL) mutant non-small cell lung cancers (NSCLC) do not respond well to current immune checkpoint blockade therapies, however targeting major histocompatibility complex class I-related chain A or B (MICA/B), could pose an alternative therapeutic strategy through activation of natural killer (NK) cells.

Methods: Expression of NK cell activating ligands in NSCLC cell line and patient data were analyzed. Cell surface expression of MICA/B in NSCLC cell lines was determined through flow cytometry while ligand shedding in both patient blood and cell lines was determined through ELISA.

View Article and Find Full Text PDF

Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion.

PLoS Negl Trop Dis

January 2025

Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali.

Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!