Background: Osteoporosis is a bone disease alters the amount and variety of proteins in bone tissue and increases the potential of bone fracture. Antiresorptive therapy is one of the most popular treatment methods for osteoporosis. To reduce side effects and enhance the bioavailability of drug agents, the controlled delivery of drug is commonly utilized.
Objectives: We investigated the controlled release of Alendronate in different composites of layered double hydroxide (LDH) using poly (ε-caprolactone) (PCL) as a matrix.
Materials And Methods: We prepared different microsphere composites of ALD intercalated in various amounts of LDH, using PCL as a matrix. The controlled release of ALD from these composites is subsequently investigated. Samples are characterized and cell cytotoxicity, attachment, osteogenic activity including alkaline phosphatase activity and mineralization are examined using MG-63 human osteosarcoma cells.
Results: The results showed that the release of ALD is more desirable and controlled in the samples having a higher amount of LDH incorporated into the PCL matrix. MG63 cells show a significant increase in viability, attachment, and mineralization while alkaline phosphatase activity remains almost at a constant level after 3 weeks.
Conclusions: Overall, the findings showed that by incorporation of 15 wt% of LDH, the composite microsphere is capable of holding the antiresorptive drug longer and release it in a more controlled manner. This is an advantageous and promising characteristic for a carrier that could be used as a potential candidate for osteoporosis treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217540 | PMC |
http://dx.doi.org/10.30498/IJB.2021.2490 | DOI Listing |
Langmuir
January 2025
Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315211 Ningbo, P. R. China.
Solar-driven desalination technology is currently an important way to obtain freshwater resources. Significantly, porous materials are used as substrate materials of interface solar evaporator, and their specific impact of water transport property and thermal management during evaporation is worth exploring. In this paper, poly(vinyl alcohol) (PVA) sponges were prepared by a chemical foaming method, adjusted the PVA polymerization degree, and formaldehyde-hydroxyl ratio to regulate the pore size, and polypyrrole (PPy) was grown in situ on the surface skeleton of PVA sponge to construct a new interfacial solar evaporator (PPy/PVA) with different pore structures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Electrical Engineering, Feng Chia University, Taichung, 407802, Taiwan.
This study presents an innovative glucose detection platform, featuring a highly sensitive, non-enzymatic glucose sensor. The sensor integrates nickel nanowires and a graphene thin film deposited on the gate region of an extended-gate electric double-layer field-effect transistor (EGEDL-FET). This unique combination of materials and device structure enables superior glucose sensing performance.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.
Control of the formation of liquid crystalline 3̄ gyroid phases and their nanostructures is critical to advance materials chemistry based on the structural feature of three-dimensional helical networks. Here, we present that introducing methyl side-group(s) and slight non-symmetry into aryloyl-hydrazine-based molecules is unexpectedly crucial for their formation and can be a new design strategy through tuning intermolecular interactions: the two chemical modifications in the core portion of the chain-core-chain type molecules effectively lower and extend the 3̄ phase temperature ranges with the increased twist angle between neighboring molecules along the network. The detailed analyses of the aggregation structure revealed the change in the core assembly mode from the double-layered core mode of the mother molecule (without methyl groups) to the single-layered core mode.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Marine and Environmental Science, Tianjin University of Science and Technology, Tianjin 300457, China.
Humic acid (HA) enhances colloidal transport in porous media, yet the mechanisms by which the HA adsorption conformation affects colloid transport remain unclear. This study investigated the influence of HA on the transport of petroleum-hydrocarbon-contaminated soil colloids (TPHs-SC) in saturated sand columns. The presence of TPHs on the colloidal surface occupied adsorption sites, hindering HA from forming a horizontal adsorption conformation, as observed on uncontaminated soil colloids (SC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!