Objective: Oxidative stress resulting from chronic hyperglycemia induced many complications in diabetes and led to disorders and dysfunctions in different organs. This study aimed to evaluate the hepatoprotective rate of cress seeds (CS) or seeds in the diet on lowering hyperglycemia and oxidative stress damaging.

Methods: Diabetes was induced by a single intraperitoneal injection of 60 mg/kg of streptozotocin (STZ). Forty-eight male rats were randomly divided into six groups : (D-0) and (ND-0) diabetic, and non-diabetic groups were fed with a normal diet, (ND-CS2) and (ND-CS5) non-diabetic groups were fed with diet containing 2 % and 5 % of cress seeds respectively, (D-CS2) and (D-CS5) diabetic groups were fed with diet containing 2 % and 5 % of cress seeds respectively. After 28 days of treatment, biochemical, histological, and oxidative parameters were determined. Hepatic and pancreatic histological sections were developed.

Results: STZ-injection caused hyperglycemia accompanied by a disturbance in biochemical parameters and intensified oxidative stress status compared to the (ND-0) group. Hepatic and pancreatic histological sections of diabetic rats showed a disrupted architecture. However, the cress seeds-diet revealed a significant decrease of hyperglycemia and a reduction of the intensity of oxidative stress induced by diabetes compared to the (D-0) group, remarked by a decreased level of Malondialdehyde (MDA) and high levels of glutathione (GSH) and the antioxidant enzymes, led to the decrease of the majority of parameters principally hepatic and lipid profile with histological regeneration.

Conclusions: Cress seeds supplementation confirmed their potential anti-diabetic and antioxidant activities with higher efficacy of 5 % dose than the lower dose of 2 %. Therefore, 5 % of cress seeds administration seems to be the excellent rate recommended in controlling diabetes and its complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212251PMC
http://dx.doi.org/10.1007/s40200-021-00764-9DOI Listing

Publication Analysis

Top Keywords

cress seeds
24
oxidative stress
16
groups fed
12
2 % 5 %
12
5 % cress
12
seeds supplementation
8
diabetic rats
8
non-diabetic groups
8
fed diet
8
diet 2 %
8

Similar Publications

Non-adapted bacterial infection suppresses plant reproduction.

Sci Adv

January 2025

School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

Environmental stressors, including pathogens, substantially affect the growth of host plants. However, how non-adapted bacteria influence nonhost plants has not been reported. Here, we reveal that infection of flowers by pv.

View Article and Find Full Text PDF

Numerous challenges are posed by the extra-terrestrial environment for space farming and various technological growth systems are being developed to allow for microgreens' cultivation in space. Microgreens, with their unique nutrient profiles, may well integrate the diet of crew members, being a natural substitute for chemical food supplements. However, the space radiation environment may alter plant properties, and there is still a knowledge gap concerning the effects of various types of radiation on plants and specifically on the application of efficient and rapid methods for selecting new species for space farming, based on their radio-resistance.

View Article and Find Full Text PDF

The effects of intense heat during the reproductive phase of two Brassica species-B. napus and C. sativa-could be alleviated by a prior gradual increase exposure and/or PGPR inoculation.

View Article and Find Full Text PDF

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • Yellow seed coat color (SCC) is linked to higher seed oil content (SOC) and lower seed lignocellulose content (SLC), but no dominant yellow SCC genes were previously known.
  • A dominant yellow SCC gene called N53-2 was identified in a study using a double haploid population from N53-2 and a black seed coat material, revealing thousands of expression quantitative trait loci (eQTLs) and specific trans-eQTL hotspots.
  • Transgenic experiments confirmed that the newly discovered allele produces yellow SCC seeds with significantly higher SOC and lower SLC, offering promising prospects for breeding rapeseed with desirable traits.
View Article and Find Full Text PDF

Arachis hypogaea monoacylglycerol lipase AhMAGL3b participates in lipid metabolism.

BMC Plant Biol

December 2024

College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China.

Background: Monoacylglycerol lipase (MAGL) belongs to the serine hydrolase family; it catalyzes MAG to produce glycerol and free fatty acids (FFAs), which is the final step in triacylglycerol (TAG) hydrolysis. The effects of MAGL on comprehensive lipid metabolism and plant growth and development have not been elucidated, especially in Arachis hypogaea, an important oil crop.

Results: Herein, AhMAGL3b encoding a protein with both hydrolase and acyltransferase regions, a member of MAGL gene family, was cloned and overexpressed in Arabidopsis thaliana.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!