Histone deacetylase 5 (HDAC5) is a class II HDAC. Aberrant expression of HDAC5 has been observed in multiple cancer types, and its functions in cell proliferation and invasion, the immune response, and maintenance of stemness have been widely studied. HDAC5 is considered as a reliable therapeutic target for anticancer drugs. In light of recent findings regarding the role of epigenetic reprogramming in tumorigenesis, in this review, we provide an overview of the expression, biological functions, regulatory mechanisms, and clinical significance of HDAC5 in cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222663PMC
http://dx.doi.org/10.3389/fonc.2021.661620DOI Listing

Publication Analysis

Top Keywords

hdac5 cancer
8
hdac5
5
insights function
4
function clinical
4
clinical application
4
application hdac5
4
cancer management
4
management histone
4
histone deacetylase
4
deacetylase hdac5
4

Similar Publications

Unraveling the mechanism of microRNA-134 in colon cancer progression: Targeting KRAS and PIK3CA for cell cycle control and histone deacetylase regulation.

Exp Cell Res

December 2024

Medical Biotechnology lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Rajiv Gandhi Salai (OMR), Kelambakkam, Chennai, Tamil Nadu, 603 103, India. Electronic address:

Colon cancer is the leading cause of cancer-related deaths worldwide. MicroRNAs (miRNAs) are key regulators of gene expression, often dysregulated in colon cancer. This study aims to elucidate the therapeutic role of miR-134-5p as a tumor suppressor miRNA in colon cancer cells.

View Article and Find Full Text PDF

Acetylation of E2F1 at K125 facilitates cell apoptosis under serum stress.

Transl Oncol

December 2024

Department of General Surgery, Sanmen People's Hospital, Sanmen 317100, China. Electronic address:

Article Synopsis
  • E2F1 is a vital transcription factor involved in regulating the cell cycle and is often found at high levels in cancer cells.
  • Recent research indicates that E2F1 can also trigger apoptosis (cell death) under stress conditions, posing a dual role in cell survival and death.
  • This study reveals that acetylation of E2F1 at K125 during serum stress enhances its ability to promote the expression of Fas and BAX, leading to the activation of caspase-3 and apoptosis in liver cancer cells.
View Article and Find Full Text PDF

KMT2A-rearranged acute lymphoblastic leukemia (ALL) is characterized by deregulation of the epigenome and shows susceptibility towards histone deacetylase (HDAC) inhibition. Most broad-spectrum HDAC inhibitors simultaneously target multiple human HDAC isoforms. Consequently, they often induce toxicity and especially in combination with other therapeutic agents.

View Article and Find Full Text PDF

Histone deacetylase 5 (HDAC5) is an enzyme that deacetylates lysine residues on the N-terminal of histones and other proteins. It has been reported that HDAC5 deacetylates p53, the critical factor regulating cell cycle, in response to cellular stress, but the transcriptional products haven't been identified. Herein, we used p53 signaling pathway qPCR-chip to determine how HDAC5-mediated deacetylation of p53 affects cell cycle.

View Article and Find Full Text PDF

Objective: To analyze the distribution characteristics of prognostic factors affecting recurrence in peripheral T-cell lymphoma (PTCL) patients with different levels of histone deacetylase (HDAC) based on latent class analysis.

Methods: 112 PTCL patients who were treated in our hospital from September 2012 to September 2019 were selected and divided into recurrence group and non-recurrence group. The clinical data of the two groups of patients were compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!