AI Article Synopsis

  • The activation of STING is crucial for boosting anti-tumor immunity, and its dysfunction is linked to bad outcomes in various cancers.
  • In our study on cervical cancer, we found that higher levels of STING protein correlate with better survival rates in patients treated with either surgery or radio(chemo)therapy.
  • Additionally, the presence of CD103+ T cells, which are associated with a positive prognosis, enhances survival rates, especially in those receiving radio(chemo)therapy.
  • Combining STING protein levels and CD103+ T cell presence could help better predict outcomes for cervical cancer patients.

Article Abstract

Activation of STimulator of INterferon Genes (STING) is important for induction of anti-tumor immunity. A dysfunctional STING pathway is observed in multiple cancer types and associates with poor prognosis and inferior response to immunotherapy. However, the association between STING and prognosis in virally induced cancers such as HPV-positive cervical cancer remains unknown. Here, we investigated the prognostic value of STING protein levels in cervical cancer using tumor tissue microarrays of two patient groups, primarily treated with surgery (n = 251) or radio(chemo)therapy (n = 255). We also studied CD103, an integrin that marks tumor-reactive cytotoxic T cells that reside in tumor epithelium and that is reported to associate with improved prognosis. Notably, we found that a high level of STING protein was an independent prognostic factor for improved survival in both the surgery and radio(chemo)therapy group. High infiltration of CD103+ T cells was associated with improved survival in the radio(chemo)therapy group. The combination of STING levels and CD103+ T cell infiltration is strongly associated with improved prognosis. We conclude that combining the prognostic values of STING and CD103 may improve the risk stratification of cervical cancer patients, independent from established clinical prognostic parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205031PMC
http://dx.doi.org/10.1080/2162402X.2021.1936391DOI Listing

Publication Analysis

Top Keywords

cervical cancer
16
sting levels
8
cell infiltration
8
sting protein
8
improved prognosis
8
improved survival
8
radiochemotherapy group
8
associated improved
8
sting
7
prognostic
5

Similar Publications

Background: Small extracellular vesicles (sEV) released by tumor cells (tumor-derived sEV; TEX) mediate intercellular communication between tumor and non-malignant cells and were shown to impact disease progression. This study investigates the relationship between the expression levels of the vesiculation-related genes linked to sEV production and the tumor microenvironment (TME).

Methods: Two independent gene sets were analyzed, both previously linked to sEV production in various non-malignant or malignant cells.

View Article and Find Full Text PDF

Hinokitiol (HK), a monoterpenoid that naturally occurs in plants belonging to the Cupressaceae family, possesses important biological activities, including an anticancer effect. This review summarizes its anticancer potential and draws possible molecular interventions. In addition, it evaluates the biopharmaceutical, toxicological properties, and clinical application of HK to establish its viability for future advancement as a dependable anticancer medication.

View Article and Find Full Text PDF

Despite the recent advances in vaccination and treatment strategies, cervical cancer continues to claim numerous lives every year. Owing to the fact that non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) interact with coding transcripts, and effectuate key roles in the tumorigenesis and metastasis of cervical cancer, there has been extensive research in recent years to explore their potential as biomarkers for early detection, or as therapeutic targets. Through this review, we aim to provide a comprehensive overview of the recent advancements in discoveries about cervical cancer-associated lncRNA-miRNA-mRNA axes, their dysregulation, and their roles in various signaling pathways associated with the growth, survival, invasion, and metastasis of cervical cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!