Epigenetic mechanisms allow the establishment and maintenance of multiple cellular phenotypes from a single genomic code. At the initiation of development, the oocyte and spermatozoa provide their fully differentiated chromatin that soon after fertilization undergo extensive remodeling, resulting in a totipotent state that can then drive cellular differentiation towards all cell types. These remodeling involves different epigenetic modifications, including DNA methylation, post-translational modifications of histones, non-coding RNAs, and large-scale chromatin conformation changes. Moreover, epigenetic remodeling is responsible for reprogramming somatic cells to totipotency upon somatic cell nuclear transfer/cloning, which is often incomplete and inefficient. Given that environmental factors, such as assisted reproductive techniques (ARTs), can affect epigenetic remodeling, there is interest in understanding the mechanisms driving these changes. We describe and discuss our current understanding of mechanisms responsible for the epigenetic remodeling that ensues during preimplantation development of mammals, presenting findings from studies of mouse embryos and when available comparing them to what is known for human and cattle embryos.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202464 | PMC |
http://dx.doi.org/10.21451/1984-3143-AR2018-0068 | DOI Listing |
Alzheimers Dement
December 2024
The University of Arizona - Tucson, Tucson, AZ, USA.
Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Columbia University, New York, NY, USA.
Background: While dysregulated local innate immunity and microglial dysfunction are thought to play a pathogenic role in Alzheimer's disease (AD), the underlying mechanisms remain unclear. Importantly, activation of immune and metabolic pathways in myeloid cells can lead to a functional reprogramming process, termed innate immune memory (IIM), in which the response to an initial stimulus shapes long-lasting epigenetic modifications that alter the response to future inflammatory stimuli. This epigenetic imprinting process has been minimally studied in microglia.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
ATP-dependent chromatin remodeling protein ATRX is an essential regulator involved in maintenance of DNA structure and chromatin state and regulation of gene expression during development. ATRX was originally identified as the monogenic cause of X-linked α-thalassemia mental retardation (ATR-X) syndrome. Affected individuals display a variety of developmental abnormalities and skeletal deformities.
View Article and Find Full Text PDFCancer Res
January 2025
Medical Department of Hematology, Oncology and Tumor Immunology, Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Charité - Universitätsmedizin, Berlin, Germany.
Therapy-exposed surviving cancer cells may have encountered profound epigenetic remodeling that renders these drug-tolerant persisters candidate drivers of particularly aggressive relapses. Typically presenting as slow-to-nongrowing cells, persisters are senescent or senescence-like cells. In this issue of Cancer Research, Ramponi and colleagues study mTOR/PI3K inhibitor-induced embryonic diapause-like arrest (DLA) as a model of persistence in lung cancer and melanoma cells and compare this persister condition with therapy-induced senescence in the same cells.
View Article and Find Full Text PDFJ Complement Integr Med
January 2025
International College of Apitherapy, Bogota, Colombia.
Introduction: Diabetes mellitus is a complex disease in terms of its causes and pathophysiological processes, it produces a significant impact on health and leads to complications that are difficult to manage.
Content: This review summarizes and analyzes recent advances in the understanding of the mechanisms of diabetes mellitus and how apitherapy affects them. Also present the available clinical evidence on its application.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!