Betalains are pigments found in plants of the Caryophyllales order, and include the red-purple betacyanins and the yellow-orange betaxanthins. The red pigment from red beets, betanin, is made from tyrosine by a biosynthetic pathway that consists of a cytochrome P450, a L-DOPA dioxygenase, and a glucosyltransferase. The entire pathway was recently reconstituted in plants that do not make betalains naturally including potato and tomato plants. The amount of betanin produced in these plants was however not as high as in red beets. It was recently shown that a plastidic arogenate dehydrogenase gene involved in biosynthesis of tyrosine in plants is duplicated in and other betalain-producing plants, and that one of the two encoded enzymes, BvADHα, has relaxed feedback inhibition by tyrosine, contributing to the high amount of betanin found in red beets. We have reconstituted the complete betanin biosynthetic pathway in tomato plants with or without a gene, and with all genes expressed under control of a fruit-specific promoter. The plants obtained with a construct containing produced betanin at a higher level than plants obtained with a construct lacking this gene. These results show that use of BvADHα can be useful for high level production of betalains in heterologous hosts. Unlike red beets that produce both betacyanins and betaxanthins, the transformed tomatoes produced betacyanins only, conferring a bright purple-fuschia color to the tomato juice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220147PMC
http://dx.doi.org/10.3389/fpls.2021.682443DOI Listing

Publication Analysis

Top Keywords

red beets
16
plants
9
high level
8
biosynthetic pathway
8
tomato plants
8
amount betanin
8
plants construct
8
betanin
6
red
5
engineering betalain
4

Similar Publications

A Sustainable Approach: Repurposing Red Beetroot Peels for Innovative Meringue Products.

Foods

January 2025

Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania.

With the increasing global demand for sustainable and eco-friendly food items, it is imperative to investigate alternate sources of natural pigments. The red beetroot ( L.) is a traditional food in many countries and a rich bioactive compound known for its beneficial properties.

View Article and Find Full Text PDF

Phenolic compounds are known for their health-promoting effects on humans. Pak choi (Brassica rapa ssp. chinensis) and Swiss chard (Beta vulgaris subsp.

View Article and Find Full Text PDF

In the current study, the effects of fermentation by Lactobacillus acidophilus, Levilactobacillus brevis or Lactiplantibacillus plantarum (La/Lb/Lp, 1-2.5%) and incubation (30/37 °C, C1/C2) of red beetroot juice on the profile of betalains and polyphenols (UHPLC-DAD-MS), and antioxidant capacity using photochemiluminescence (PCL) and spectrophotometric assays (DPPH/ABTS) was investigated. Additionally, anti-glycaemic (anti-AGEs) and anticholinergic (anti-AChE) potential in vitro was analysed.

View Article and Find Full Text PDF

Development of Betalain-immobilized polylactic acid nanofibers as a green and sustainable sensor for toxic ammonia.

Int J Biol Macromol

December 2024

National Research Centre (Scopus Affiliation ID 60014618), Textile Industries Research Division, Pre-treatment and Finishing of Cellulose Based Textiles Department, 33 El-Buhouth St., (former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.

Ammonia has been an important industrial colorless agent. Exposure to gaseous ammonia results in organ damage or even death. Herein, an environmentally friendly colorimetric detector for aqueous and gaseous ammonia was prepared utilizing vapochromic polylactic acid nanofibers.

View Article and Find Full Text PDF

Betalains are naturally occurring pigments sourced mainly from (beetroot), spp. (dragon fruit), spp., and spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!