Endophytes are highly associated with plant growth and health. Exploring the variation of bacterial communities in different plant niches is essential for understanding microbe-plant interactions. In this study, high-throughput gene sequencing was used to analyze the composition and abundance of bacteria from the rhizospheric soil and different parts of the . The results indicated that the bacterial community structure varied widely among compartments. Bacterial diversity was observed to be the highest in the rhizospheric soil and the lowest in fruits. Proteobacteria, Actinobacteria, and Bacteroidetes were found as the dominant phyla. The genera (∼47.77%) and (∼45.25%) dominated in fruits and leaves, respectively. High-performance liquid chromatography (HPLC) was employed to measure the alkaloid content of different plant parts. Significant correlations were observed between endophytic bacteria and alkaloids. Especially, showed a significant positive correlation with sanguinarine and chelerythrine. All four alkaloids were negatively correlated with the microbiota of stems. The predicted result of PICRUST2 revealed that the synthesis of plant alkaloids might lead to a higher abundance of endophytic microorganisms with genes related to alkaloid synthesis, further demonstrated the correlation between bacterial communities and alkaloids. This study provided the first insight into the bacterial community composition in different parts of and the correlation between the endophytic bacteria and alkaloids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219869PMC
http://dx.doi.org/10.3389/fmicb.2021.681210DOI Listing

Publication Analysis

Top Keywords

bacterial community
12
plant niches
8
bacterial communities
8
rhizospheric soil
8
endophytic bacteria
8
bacteria alkaloids
8
alkaloids
6
bacterial
6
plant
5
symbiont revealing
4

Similar Publications

Analyzing bacterial networks and interactions in skin and gills of Sparus aurata with microalgae-based additive feeding.

Sci Rep

December 2024

Department of Microbiology, Faculty of Sciences, CEI·MAR-International Campus of Excellence in Marine Science, University of Malaga, Málaga, Spain.

The inclusion of microalgae in functional fish diets has a notable impact on the welfare, metabolism and physiology of the organism. The microbial communities associated with the fish are directly influenced by the host's diet, and further understanding the impact on mucosal microbiota is needed. This study aimed to analyze the microbiota associated with the skin and gills of Sparus aurata fed a diet containing 10% microalgae.

View Article and Find Full Text PDF

Sponges harbour complex microbiomes and as ancient metazoans and important ecosystem players are emerging as powerful models to understand the evolution and ecology of symbiotic interactions. Metagenomic studies have previously described the functional features of sponge symbionts, however, little is known about the metabolic interactions and processes that occur under different environmental conditions. To address this issue, we construct here constraint-based, genome-scale metabolic networks for the microbiome of the sponge Stylissa sp.

View Article and Find Full Text PDF

Variation of gene ratios in mock communities constructed with purified 16S rRNA during processing.

Sci Rep

December 2024

Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto, Travessa 3, n. 380., São Paulo, SP, CEP 05508-900, Brazil.

16S ribosomal nucleic acid (16S rRNA) analysis allows to specifically target the metabolically active members of microbial communities. The stability of the ratios between target genes in the workflow, which is essential for the bioprocess-relevance of the data derived from this analysis, was investigated using synthetic mock communities constructed by mixing purified 16S rRNA from Bacillus subtilis (Bs), Staphylococcus aureus (Sa), Pseudomonas aeruginosa (Pa), Klebsiella pneumoniae (Kp) and Burkholderia cepacia (Bc) in different proportions. The RT reaction yielded one copy of cDNA per rRNA molecule for Pa, Bc and Sa but only 2/3 of the expected cDNA from 16S rRNAs of Bs and Kp.

View Article and Find Full Text PDF

Evolutionary change within community members and shifts in species composition via species sorting contribute to community and trait dynamics. However, we do not understand when and how both processes contribute to community dynamics. Here, we estimated the contributions of species sorting and evolution over time (60 days) in bacterial communities of 24 species under selection by a ciliate predator.

View Article and Find Full Text PDF

Bacterial synergies amplify nitrogenase activity in diverse systems.

ISME Commun

January 2024

School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, United States.

Endophytes are microbes living within plant tissue, with some having the capacity to fix atmospheric nitrogen in both a free-living state and within their plant host. They are part of a diverse microbial community whose interactions sometimes result in a more productive symbiosis with the host plant. Here, we report the co-isolation of diazotrophic endophytes with synergistic partners sourced from two separate nutrient-limited sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!