Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy.

Curr Treat Options Neurol

Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Published: March 2020

Purpose Of Review: The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets.

Recent Findings: Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1.

Summary: This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223756PMC
http://dx.doi.org/10.1007/s11940-020-0614-xDOI Listing

Publication Analysis

Top Keywords

cerebral edema
28
edema
9
traumatic brain
8
brain injury
8
current management
8
promising molecular
8
molecular mechanism-based
8
cerebral
7
molecular
5
edema traumatic
4

Similar Publications

Intracranial complications of otitis media are rare but pose a significant risk of morbidity and mortality. We report a case of a 27-year-old man with cognitive impairment who presented with fever, right-sided otalgia, otorrhea, and vomiting for three days. His neurological examination was unremarkable, and a brain computed tomography (CT) revealed right-sided otomastoiditis without intraparenchymal lesions.

View Article and Find Full Text PDF

Gliomas are highly heterogeneous and often include a nonenhancing component that is hyperintense on T weighted MRI. This can often not be distinguished from secondary gliosis and surrounding edema. We hypothesized that the extent of these T hyperintense areas can more accurately be determined on high-quality 7 T MRI scans.

View Article and Find Full Text PDF

Hyponatremia is associated with malignant brain edema after mechanical thrombectomy in acute ischemic stroke.

BMC Neurol

January 2025

Neurological Disorder Center, Department of Cerebrovascular Disease, Suining Central Hospital, Sichuan, 629000, China.

Background: Hyponatremia (< 135 mmol/L) is the most common electrolyte disturbance in patients with stroke. However, few studies have reported the relationship between hyponatremia at admission and outcomes in patients with acute ischemic stroke (AIS) treated with mechanical thrombectomy (MT). This study is aimed to explore the association between hyponatremia and clinical outcomes following MT.

View Article and Find Full Text PDF

Prediction of isocitrate dehydrogenase (IDH) mutation status and epilepsy occurrence are important to glioma patients. Although machine learning models have been constructed for both issues, the correlation between them has not been explored. Our study aimed to exploit this correlation to improve the performance of both of the IDH mutation status identification and epilepsy diagnosis models in patients with glioma II-IV.

View Article and Find Full Text PDF

Novel Insights In presence of cardiotocographic features suspected for hypoxic insult, intrapartum ultrasound in the hands of experienced operators can demonstrate cerebral edema as an indirect sign of fetal hypoxia affecting the fetal CNS and exclude non-hypoxic conditions potentially leading to abnormalities of the fetal heart rate. Introduction Hypoxic-ischemic encephalopathy is a syndrome involving the fetal central nervous system as the result of a perinatal hypoxic-ischemic injury. To date, transfontanellar ultrasound represents the first line exam in neonates with clinical suspicion of HIE as it allows to show features indicating acute hypoxic injury and exclude potential non-hypoxic determinants of HIE, however there is no report concerning the sonographic assessment of the brain during labor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!