Purpose: We evaluated the diagnostic performance of the texture features of dynamic contrast-enhanced (DCE) MRI for breast cancer diagnosis in which the discriminator was optimized, so that the specificity was maximized via the restriction of the negative predictive value (NPV) to greater than 98%.
Methods: Histologically proven benign and malignant mass lesions of DCE MRI were enrolled retrospectively. Training and testing sets consist of 166 masses (49 benign, 117 malignant) and 50 masses (15 benign, 35 malignant), respectively. Lesions were classified via MRI review by a radiologist into 4 shape types: smooth (S-type, 34 masses in training set and 8 masses in testing set), irregular without rim-enhancement (I-type, 60 in training and 14 in testing), irregular with rim-enhancement (R-type, 56 in training and 22 in testing), and spicula (16 in training and 6 in testing). Spicula were immediately classified as malignant. For the remaining masses, 298 texture features were calculated using a parametric map of DCE MRI in 3D mass regions. Masses were classified into malignant or benign using two thresholds on a feature pair. On the training set, several feature pairs and their thresholds were selected and optimized for each mass shape type to maximize specificity with the restriction of NPV > 98%. NPV and specificity were computed using the testing set by comparison with histopathologic results and averaged on the selected feature pairs.
Results: In the training set, 27, 12, and 15 texture feature pairs are selected for S-type, I-type, and R-type masses, respectively, and thresholds are determined. In the testing set, average NPV and specificity using the selected texture features were 99.0% and 45.2%, respectively, compared to the NPV (85.7%) and specificity (40.0%) in visually assessed MRI category-based diagnosis.
Conclusion: We, therefore, suggest that the NPV of our texture-based features method described performs similarly to or greater than the NPV of the MRI category-based diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316135 | PMC |
http://dx.doi.org/10.2463/mrms.mp.2020-0160 | DOI Listing |
SLAS Discov
January 2025
Denali Therapeutics Inc., South San Francisco, CA 94080 USA.
Mitochondria undergo dynamic morphological changes depending on cellular cues, stress, genetic factors, or disease. The structural complexity and disease-relevance of mitochondria have stimulated efforts to generate image analysis tools for describing mitochondrial morphology for therapeutic development. Using high-content analysis, we measured multiple morphological parameters and employed unbiased feature clustering to identify the most robust pair of texture metrics that described mitochondrial state.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
Our study aims to assess the robustness of myocardial radiomic texture features (RTF) to segmentation variability and variations across scanners with different field strengths, addressing concerns about reliability in clinical practices. We conducted a retrospective analysis on 45 pairs of CMR T1 maps from 15 healthy volunteers using 1.5 T and 3 T Siemens scanners.
View Article and Find Full Text PDFJ Vis
January 2025
Department of Cognitive Sciences and Neurobiology and Behavior, University of California, Irvine, California, USA.
A salience map is a topographic map that has inputs at each x,y location from many different feature maps and summarizes the combined salience of all those inputs as a real number, salience, which is represented in the map. Of the more than 1 million Google references to salience maps, nearly all use the map for computing the relative priority of visual image components for subsequent processing. We observe that salience processing is an instance of substance-invariant processing, analogous to household measuring cups, weight scales, and measuring tapes, all of which make single-number substance-invariant measurements.
View Article and Find Full Text PDFInt J Dermatol
January 2025
Department of Dermatology, Warsaw University of Medicine, Warsaw, Poland.
Background: Afro-textured hair exhibits distinct physicochemical properties with possible variations in measurable hair parameters. Standardized documentation of trichoscopic norms of afro-textured hair in indigenous Africans is notably lacking.
Methods: A cross-sectional study involving 122 South Africans of both genders of African ancestry (mean age 20.
Sci Rep
January 2025
RIKEN Center for Brain Science, Brain Image Analysis Unit, Wako-shi, 351-0106, Japan.
Predicting the evolution of white matter hyperintensities (WMH), a common feature in brain magnetic resonance imaging (MRI) scans of older adults (i.e., whether WMH will grow, remain stable, or shrink with time) is important for personalised therapeutic interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!