The contribution of single-cell analysis of acute leukemia in the therapeutic strategy.

Biomark Res

Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.

Published: June 2021

After decades during which the treatment of acute myeloblastic leukemia was limited to variations around a skeleton of cytarabine/anthracycline, targeted therapies appeared. These therapies, first based on monoclonal antibodies, also rely on specific inhibitors of various molecular abnormalities. A significant but modest prognosis improvement has been observed thanks to these new treatments that are limited by a high rate of relapse, due to the intrinsic chemo and immune-resistance of leukemia stem cell, together with the acquisition of these resistances by clonal evolution. Relapses are also influenced by the equilibrium between the pro or anti-tumor signals from the bone marrow stromal microenvironment and immune effectors. What should be the place of the targeted therapeutic options in light of the tumor heterogeneity inherent to leukemia and the clonal drift of which this type of tumor is capable? Novel approaches by single cell analysis and next generation sequencing precisely define clonal heterogeneity and evolution, leading to a personalized and time variable adapted treatment. Indeed, the evolution of leukemia, either spontaneous or under therapy selection pressure, is a very complex phenomenon. The model of linear evolution is to be forgotten because single cell analysis of samples at diagnosis and at relapse show that tumor escape to therapy occurs from ancestral as well as terminal clones. The determination by the single cell technique of the trajectories of the different tumor sub-populations allows the identification of clones that accumulate factors of resistance to chemo/immunotherapy ("pan-resistant clones"), making possible to choose the combinatorial agents most likely to eradicate these cells. In addition, the single cell technique identifies the nature of each cell and can analyze, on the same sample, both the tumor cells and their environment. It is thus possible to evaluate the populations of immune effectors (T-lymphocytes, natural killer cells) for the leukemia stress-induced alteration of their functions. Finally, the single cells techniques are an invaluable tool for evaluation of the measurable residual disease since not only able to quantify but also to determine the most appropriate treatment according to the sensitivity profile to immuno-chemotherapy of remaining leukemic cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237443PMC
http://dx.doi.org/10.1186/s40364-021-00300-0DOI Listing

Publication Analysis

Top Keywords

single cell
16
immune effectors
8
cell analysis
8
cell technique
8
leukemia
6
cell
6
tumor
5
single
5
cells
5
contribution single-cell
4

Similar Publications

Background: The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC.

View Article and Find Full Text PDF

Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.

Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.

View Article and Find Full Text PDF

An integrated investigation of mitochondrial genes in COPD reveals the causal effect of NDUFS2 by regulating pulmonary macrophages.

Biol Direct

January 2025

Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.

Background: Despite the increasing body of evidence that mitochondrial activities implicate in chronic obstructive pulmonary disease (COPD), we are still far from a causal-logical and mechanistic understanding of the mitochondrial malfunctions in COPD pathogenesis.

Results: Differential expression genes (DEGs) from six publicly available bulk human lung tissue transcriptomic datasets of COPD patients were intersected with the known mitochondria-related genes from MitoCarta3.0 to obtain mitochondria-related DEGs associated with COPD (MitoDEGs).

View Article and Find Full Text PDF

Purpose: Severe combined immunodeficiency (SCID) is a set of rare monogenic inherited diseases that together represent the most severe form of the primary immunodeficiency disease phenotype. Preimplantation genetic testing for monogenic defects (PGT-M) is an effective reproductive technology strategy to prevent disease-causing gene mutations from being transmitted to offspring. The aim of this study was to report the use of PGT-M strategy based on karyomapping in four families to avoid the birth of SCID children.

View Article and Find Full Text PDF

Background: Up to 23% of breast cancer patients recurred within a decade after trastuzumab treatment. Conversely, one trial found that patients with low HER2 expression and metastatic breast cancer had a positive response to trastuzumab-deruxtecan (T-Dxd). This indicates that relying solely on HER2 as a single diagnostic marker to predict the efficacy of anti-HER2 drugs is insufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!