Febuxostat (FXS) is a potent antigout drug with poor water solubility and relative high first-pass effect leading to moderate oral bioavailability (<49%). This study aimed to increase FXS solubility and bioavailability by optimizing sublingual fast-dissolving films (SFs) containing a selected FXS self-nano-emulsifying system (s-SNES) previously prepared by our team. The s-SNES was loaded into SFs by solvent casting technique. A full factorial design (3) was applied to study the effects of polymer and plasticizer types on mechanical characteristics and the dissolution profile of FXS from the SFs. Numerical optimization was performed to select the SF having highest desirability according to predetermined characteristics. The optimized SF (O-SF) contained 1 g of s-SNES, polyvinylpyrrolidone K30 (6%w/v), polyethylene glycol 300 (20%w/w of polymer wt.), and Avicel PH101 (0.5%w/v). O-SF showed good permeation of FXS through sheep sublingual tissue. Storage of O-SF for three months showed no significant change in the FXS dissolution profile. performance of O-SF in rabbits was compared to that of oral marketed tablets (Staturic 80 mg). A cross-over design was applied and pharmacokinetic parameters were calculated after ensuring absence of sequence effect. Statistical analysis revealed better performance for O-SF with significantly higher , AUC, AUC, apparent together with lower , and apparent k than marketed tablets. Relative bioavailability of O-SF compared to the marketed tablet was found to be 240.6%. This confirms the achievement of the study aims of improving dissolution rate and bioavailability of FXS using a patient-wise convenient formula.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260042PMC
http://dx.doi.org/10.1080/10717544.2021.1927247DOI Listing

Publication Analysis

Top Keywords

formulation characterization
4
characterization optimization
4
optimization performance
4
performance febuxostat
4
febuxostat self-nano-emulsifying
4
self-nano-emulsifying system
4
system loaded
4
loaded sublingual
4
sublingual films
4
films febuxostat
4

Similar Publications

In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.

View Article and Find Full Text PDF

Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.

Method: A 3 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties.

View Article and Find Full Text PDF

Background: Psychological safety as the key to mental health, not only affects individual happiness and quality of life but also relates to social stability and harmony. However, psychological safety is complex and multidimensional, with unclear internal structures and influencing factors and insufficient research on gender and age differences. Urban residents are living in an environment characterized by fast-paced, high-pressure, multicultural integration, and complex social relationships.

View Article and Find Full Text PDF

IgA nephropathy (IgAN) is related to the balance of gut microbiota. However, it is unclear whether changes in the gut microbiota can cause IgAN or attenuate its progression. This study employed IgAN and human microbiota-associated (HMA)-IgAN models to investigate the impact of IgAN on gut microbiota alteration and the mechanisms by which gut microbiota might trigger IgAN.

View Article and Find Full Text PDF

Role of PEGylated lipid in lipid nanoparticle formulation for in vitro and in vivo delivery of mRNA vaccines.

J Control Release

January 2025

Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore. Electronic address:

mRNA-loaded lipid nanoparticles (mRNA-LNPs) hold great potential for disease treatment and prevention. LNPs are normally made from four lipids including ionizable lipid, helper lipid, cholesterol, and PEGylated lipid (PEG-lipid). Although PEG-lipid has the lowest content, it plays a crucial role in the effective delivery of mRNA-LNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!