Vitamins such as riboflavin and ascorbic acid are frequently utilized in a range of biomedical applications as drug delivery targets, fluidic tracers, and pharmaceutical excipients. Sensing these biochemicals in the human body has the potential to significantly advance medical research and clinical applications. In this work, a nanosensor platform consisting of single-walled carbon nanotubes (SWCNTs) with nanoparticle corona phases engineered to allow for the selective molecular recognition of ascorbic acid and riboflavin, is developed. The study provides a methodological framework for the implementation of colloidal SWCNT nanosensors in an intraperitoneal SKH1-E murine model by addressing complications arising from tissue absorption and scattering, mechanical perturbations, as well as sensor diffusion and interactions with the biological environment. Nanosensors are encapsulated in a polyethylene glycol diacrylate hydrogel and a diffusion model is utilized to validate analyte transport and sensor responses to local concentrations at the boundary. Results are found to be reproducible and stable after exposure to 10% mouse serum even after three days of in vivo implantation. A geometrical encoding scheme is used to reference sensor pairs, correcting for in vivo optical and mechanical artifacts, resulting in an order of magnitude improvement of p-value from 0.084 to 0.003 during analyte sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202100540DOI Listing

Publication Analysis

Top Keywords

single-walled carbon
8
ascorbic acid
8
transcutaneous measurement
4
measurement essential
4
essential vitamins
4
vitamins near-infrared
4
near-infrared fluorescent
4
fluorescent single-walled
4
carbon nanotube
4
nanotube sensors
4

Similar Publications

Research on metasurface sensors with high sensitivity, strong specificity, good biocompatibility and strong integration is the key to promote the application of terahertz waves in the field of biomedical detection. However, traditional metallic terahertz metasurfaces have shortcomings such as poor biocompatibility and large ohmic loss in the terahertz frequency band, impeding their further application and integration in the field of biosensing detection. Here, we overcome this challenge by proposing a high-performance terahertz metasurface based on gold nanoparticles and single-walled carbon nanotubes composite film.

View Article and Find Full Text PDF

Flexibility has been a key selling point in the development of carbon-based electronics and sensors with the promise of further development into wearable devices. Semiconducting single-walled carbon nanotubes (SWNTs) lend themselves well to applications requiring flexibility while achieving high-performance. Our previous work has demonstrated a tri-layer polymer dielectric composed of poly(lactic acid) (PLA), poly(vinyl alcohol) with cellulose nanocrystals (PVAc), and toluene diisocyanate-terminated poly(caprolactone) (TPCL), yielding an environmentally benign and solution-processable n-type thin-film transistor (TFT).

View Article and Find Full Text PDF

Near Real-Time Measurement of Airborne Carbon Nanotubes with Metals Using Raman-Spark Emission Spectroscopy.

Appl Spectrosc

January 2025

Jiangsu Engineering Research Center for Dust Control and Occupational Protection, China University of Mining and Technology, Xuzhou, Jiangsu, China.

We present a near real-time measurement method that combines Raman and spark emission spectroscopy to quantitatively analyze the molecular structure of airborne single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), as well as detect toxic metals within CNTs. A corona-based aerosol microconcentrator was used for airborne CNTs sampling to enhance the measurement accuracy and sensitivity. The intensity of the characteristic Raman bands of CNTs and atomic emission lines of metals exhibited a linear relationship with the analyte mass, yielding high coefficient values.

View Article and Find Full Text PDF

Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.

View Article and Find Full Text PDF

The interaction of Ni with (6,0) and (8,0) zigzag carbon nanotube exterior surfaces containing two vacancies was studied using density functional theory (DFT). A two-vacancy defect was analysed in order to anchor Ni, and the pristine nanotube was also considered as a reference for each chirality. The adsorbed Ni stability and the nanotube's geometry and electronic structure were analysed before and after the adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!