Combined inhibition of AURKA and HSF1 suppresses proliferation and promotes apoptosis in hepatocellular carcinoma by activating endoplasmic reticulum stress.

Cell Oncol (Dordr)

The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, Jiangsu, 210009, China.

Published: October 2021

Purpose: In this study we aimed to assess the anti-tumor effect of co-inhibition of Aurora kinase A (AURKA) and heat shock transcription factor 1 (HSF1) on hepatocellular carcinoma (HCC), as well as to explore the mechanism involved.

Methods: Expression of AURKA and HSF1 in primary HCC tissues and cell lines was detected by immunohistochemistry (IHC), qRT-PCR and Western blotting. AURKA was knocked down in HepG2 and BEL-7402 HCC cells using lentivirus-mediated RNA interference. Next, CCK-8, clone formation, transwell and flow cytometry assays were used to assess their viability, migration, invasion and apoptosis, respectively. The expression of proteins related to cell cycle progression, apoptosis and endoplasmic reticulum stress (ERS) was analyzed using Western blotting. In addition, in vivo tumor growth of HCC cells was assessed using a nude mouse xenograft model, and the resulting tumors were evaluated using HE staining and IHC.

Results: Both AURKA and HSF1 were highly expressed in HCC tissues and cells, while being negatively related to HCC prognosis. Knockdown of AURKA significantly inhibited the colony forming and migrating capacities of HCC cells. In addition, we found that treatment with an AURKA inhibitor (Danusertib) led to marked reductions in the proliferation and migration capacities of the HCC cells, and promoted their apoptosis. Notably, combined inhibition of AURKA and HSF1 induced HCC cell apoptosis, while increasing the expression of ERS-associated proteins, including p-eIF2α, ATF4 and CHOP. Finally, we found that co-inhibition of AURKA and HSF1 elicited an excellent in vivo antitumor effect in a HCC mouse model with a relatively low cytotoxicity.

Conclusions: Combined inhibition of AURKA and HSF1 shows an excellent anti-tumor effect on HCC cells in vitro and in vivo, which may be mediated by ERS. These findings suggest that both AURKA and HSF1 may serve as targets for HCC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13402-021-00617-wDOI Listing

Publication Analysis

Top Keywords

aurka hsf1
28
hcc cells
20
combined inhibition
12
inhibition aurka
12
hcc
12
aurka
11
hsf1
8
hepatocellular carcinoma
8
endoplasmic reticulum
8
reticulum stress
8

Similar Publications

Background and Objectives: Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is the leading cause of cancer-related mortality. It arises and progresses against fibrotic or cirrhotic backgrounds mainly due to infection with hepatitis viruses B (HBV) or C (HCV) or non-viral causes that lead to chronic inflammation and genomic changes. A better understanding of molecular and immune mechanisms in HCC subtypes is needed.

View Article and Find Full Text PDF

Combined inhibition of AURKA and HSF1 suppresses proliferation and promotes apoptosis in hepatocellular carcinoma by activating endoplasmic reticulum stress.

Cell Oncol (Dordr)

October 2021

The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, Jiangsu, 210009, China.

Purpose: In this study we aimed to assess the anti-tumor effect of co-inhibition of Aurora kinase A (AURKA) and heat shock transcription factor 1 (HSF1) on hepatocellular carcinoma (HCC), as well as to explore the mechanism involved.

Methods: Expression of AURKA and HSF1 in primary HCC tissues and cell lines was detected by immunohistochemistry (IHC), qRT-PCR and Western blotting. AURKA was knocked down in HepG2 and BEL-7402 HCC cells using lentivirus-mediated RNA interference.

View Article and Find Full Text PDF

Development competence and relative transcript abundance of oocytes derived from small and medium follicles of prepubertal gilts.

Theriogenology

December 2013

Department of Animal Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-Ku, Okayama, Japan.

The objective of this study was to examine the competence of mature oocytes aspirated from small follicles (SF, <2 mm in diameter) and medium follicles (MF, 3-6 mm) of abattoir-derived prepubertal gilt ovaries. Oocytes were selected by the presence of the first polar body (1pb) after IVM in a chemically defined medium, for sperm penetration, pronuclear formation, cleavage rate, and development to the blastocyst stage. Relative transcript abundance of genes associated with regulation of oocyte maturation (AURKA, AURKB, and MOS), fertilization (ZP3 and ZP4), maternal effect (NALP9 and HSF1), and anti-apoptosis (BCL2) were also examined in oocytes at germinal vesicle (GV) and metaphase-II (MII) stages.

View Article and Find Full Text PDF

Expression of maternal transcripts during bovine oocyte in vitro maturation is affected by donor age.

Reprod Domest Anim

February 2011

Faculty of Veterinary Science, Department of Physiology, University of Murcia, Murcia, Spain.

The primary objective of this study was to compare expression of maternal transcripts in bovine oocyte populations with differential developmental competence: oocytes from prepubertal and pubertal animals; and oocytes from small (3-4 mm) and large (6-10 mm) follicles from pubertal animals. All transcripts were examined in oocytes prior to and after in vitro maturation (IVM). Genes were selected based on their known maternal effect in mouse (ZAR1, STELLA, HSF1, MATER/NLRP5 and its paralogue NLRP9), or their identification as markers of oocyte maturation, either involved in redox metabolism (PRDX1, PRDX2) or meiotic progression (AURKA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!