Comparative study on the interaction between flavonoids with different core structures and hyaluronidase.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.

Published: December 2021

Hyaluronidase (HAase) is an important enzyme involved in a promoting inflammation pathway. Flavonoids are a group of major polyphenols including flavonols (such as myricetin and rutin), dihydroflavones (such as naringin and hesperidin), and isoflavones (such as genistein and puerarin), which have been proved to possess anti-inflammatory effects. In this study, the binding of the six flavonoids to HAase was investigated by steady state and time-resolved fluorescence, circular dichroism (CD) spectroscopy and molecular docking methods. Fluorescence data reveal that the fluorescence quenching mechanism of HAase by flavonoids is all static quenching procedure regardless of their core structure. The binding affinity is strongest for rutin and ranks in the order rutin > hesperidin > myricetin > puerarin > genistein > naringin. The thermodynamic analysis implies that hydrophobic interaction, electrostatic force and hydrogen bonding are the main interaction forces. Synchronous fluorescence spectroscopy and CD spectroscopy indicate that flavonoids have the same core structure and have similar effects on the microenvironment around Trp and Tyr residues and the secondary structure of HAase. The results of molecular docking show that the binding of flavonoids with the catalytic amino acid residues of HAase may lead to the decrease of enzyme activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120079DOI Listing

Publication Analysis

Top Keywords

flavonoids core
8
binding flavonoids
8
molecular docking
8
core structure
8
flavonoids
6
haase
5
comparative study
4
study interaction
4
interaction flavonoids
4
core structures
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!